
Lycée Saint-Louis DM 1

MPSI

Corrigé du devoir à rendre le 19/09/2025

Exercice 1 :

1. ∃y ∈ F : ∀x ∈ E, y ̸= f(x)

2. ∃(x, x′) ∈ E2 : f(x) = f(x′) et x ̸= x′

3. (∃y ∈ F : ∀x ∈ E, y ̸= f(x)) ou
(
∃y ∈ F : ∃(x, x′) ∈ E2, y = f(x) = f(x′) et x ̸= x′)

ce qui est équivalent à

(∃y ∈ F : ∀x ∈ E, y ̸= f(x)) ou
(
∃(x, x′) ∈ E2, f(x) = f(x′) et x ̸= x′)

4. ∃ε > 0 : ∀η > 0, ∃x ∈ R : |x− x0| < η et |f(x)− f(x0)| ≥ ε

Exercice 2 :

1. Soit n ∈ N. Calculons :

S =

n∑
k=0

1

k + 1

(
n

k

)
.

Première méthode : Soit k ∈ J0, nK. On a

1

k + 1

(
n

k

)
=

n!

(k + 1)!(n− k)!
=

1

n+ 1

(
n+ 1

k + 1

)
Donc

n∑
k=0

1

k + 1

(
n

k

)
=

1

n+ 1

n∑
k=0

(
n+ 1

k + 1

)
=

1

n+ 1

n+1∑
k=1

(
n+ 1

k

)
=

2n+1 − 1

n+ 1

Deuxième méthode :

Considérons F : x 7→
n∑

k=0

1

k + 1

(
n

k

)
xk+1 de sorte que S = F (1). La fonction

F est dérivable de dérivée f : x 7→
n∑

k=0

(
n

k

)
xk = (1 + x)n.

Il existe donc une constante C telle que :

∀x ∈ R, F (x) =
(1 + x)n+1

n+ 1
+ C.

Pour déterminer la constante C, on remarque que F (0) = 0 donc
1

n+ 1
+C = 0.

Ainsi, on a F : x 7→ (1 + x)n+1 − 1

n+ 1
·.

Par conséquent, S =
2n+1 − 1

n+ 1
·

2. Montrons que :

∀(n,N) ∈ N2,

N∑
k=n

(
k

n

)
=

(
N + 1

n+ 1

)
.

par récurrence sur N .

Soit n ∈ N. Pour tout entier N , on pose

H(N) : ”

N∑
k=n

(
k

n

)
=

(
N + 1

n+ 1

)
.”

Initialisation : On a :

0∑
k=n

(
k

n

)
=

{
0 si n > 0
1 sinon

et

(
0 + 1

n+ 1

)
=

{
0 si n > 0
1 sinon

donc H(0) est vraie.

Hérédité : Soit N ∈ N tel que H(N) soit vraie. Montrons H(N + 1).

On a
N+1∑
k=n

(
k

n

)
=

N∑
k=n

(
k

n

)
+

(
N + 1

n

)
Par hypothèse de récurrence, on en déduit que

N+1∑
k=n

(
k

n

)
=

(
N + 1

n+ 1

)
+

(
N + 1

n

)
=

(
N + 2

n+ 1

)
La dernière égalité découlant de la formule de Pascal.

Conclusion : ∀N ∈ N,
N∑

k=n

(
k

n

)
=

(
N + 1

n+ 1

)
.

On a ainsi prouvé que

∀(n,N) ∈ N2,

N∑
k=n

(
k

n

)
=

(
N + 1

n+ 1

)
.
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Deuxième méthode :

Grâce à la formule de Pascal, on a

N+1∑
k=n

(
k

n

)
=

N∑
k=n

((
k + 1

n+ 1

)
−
(

k

n+ 1

))
puis, par télescopage :

N+1∑
k=n

(
k

n

)
=

(
N + 1

n+ 1

)
−
(

n

n+ 1

)
=

(
N + 1

n+ 1

)

Exercice 3 :

1. Soit (un)n∈N la suite dé�nie par u0 = 2, u1 = 1 et :

∀n ∈ N, un+2 = 3un+1 − 2un.

Montrons que

∃(A,B) ∈ R2 : ∀n ∈ N, un = A+B2n

Pour cela raisonnons par analyse-synthèse.

Analyse : Supposons qu'il existe (A,B) ∈ R2 tel que un = A+B2n, pour tout
entier n.

On aurait alors

{
u0 = 2 = A+B

u1 = 1 = A+ 2B
donc A = 3 et B = −1.

On a donc prouvé que s'il existe un couple de réels (A,B) tel que :

∀n ∈ N, un = A+B2n,

alors (A,B) = (3,−1).

Synthèse : Montrons par récurrence double que le couple (A,B) = (3,−1)
convient.

Pour tout entier n, on pose H(n) : ”un = 3− 2n”.
� Initialisation :H(0) etH(1) sont vraies car u0 = 2 = 3−20 et u1 = 1 = 3−21

� Hérédité : Soit n ∈ N tel que H(n) et H(n+ 1) soient vraies.

On a alors un = 3− 2n et un+1 = 3− 2n+1 donc

un+2 = 3un+1−2un = 3(3−2n+1)−2(3−2n) = 3+2n×(−6+2) = 3−2n+2.
� Conclusion : pour tout entier n, on a un = 3− 2n.

On a donc prouvé l'existence d'un unique couple (A,B) ∈ R2 tel que pour tout

entier n on ait un = A+B2n ; il s'agit du couple (A,B) = (3,−1).

2. Soit (un)n∈N la suite dé�nie par u0 = 1, u1 = 2 et ∀n ∈ N, un+2 =
u2
n+1

un
.

On a u2 = 4, u3 = 8, u4 = 16 et u5 = 32.

Montrons par récurrence double que pour tout n ∈ N, on a un = 2n.

Pour tout entier n, on pose H(n) : ”un = 2n”.
� Initialisation : H(0) et H(1) sont vraies car u0 = 1 = 20 et u1 = 2 = 21

� Hérédité : Soit n ∈ N tel que H(n) et H(n+ 1) soient vraies. On a alors

un =
u2
n+1

un
=

22(n+1)

2n
= 2n+2.

� Conclusion : pour tout entier n, on a un = 2n.

Exercice 4 : Montrons l'équivalence des propositions suivantes :

P1 : ∀ε > 0, ∃η > 0 : ∀x ∈ R, |x− x0| < η ⇒ |f(x)− f(x0)| < ε

P2 : ∀ε > 0, ∃η > 0 : ∀x ∈ R, |x− x0| < η ⇒ |f(x)− f(x0)| <
ε

2
P3 : ∀ε > 0, ∃η > 0 : ∀x ∈ R, |x− x0| ≤ η ⇒ |f(x)− f(x0)| < ε

� Supposons P1 et montrons P2.

Soit ε > 0. Comme la propriété

P (h) : ”∃η > 0 : ∀x ∈ R, |x− x0| < η ⇒ |f(x)− f(x0)| < h”

est vraie pour tout h > 0, elle est en particulier vraie pour h = ε/2 donc la

proposition

∃η > 0 : ∀x ∈ R, |x− x0| < η ⇒ |f(x)− f(x0)| <
ε

2

est vraie. Ainsi, on a prouvé que P1 ⇒ P2 .

� Supposons P2 et montrons P3.

Soit ε > 0.
Il existe donc η0 > 0 tel que ∀x ∈ R, |x− x0| < η0 ⇒ |f(x)− f(x0)| < ε/2.
Si on pose η = η0/2 alors on a

∀x ∈ R, |x− x0| ≤ η ⇒ |f(x)− f(x0)| < ε/2

En e�et, si x est un réel tel que |x− x0| ≤ η alors |x− x0| < η0 donc |f(x)−
f(x0)| < ε/2.

En utilisant que ε/2 < ε, on a donc prouvé P3. Ainsi, l'implication P2 ⇒ P3

est vraie.

� Supposons P3 et montrons P1.

Soit ε > 0. Comme P3 est vraie, il existe η > 0 tel que

∀x ∈ R, |x− x0| ≤ η ⇒ |f(x)− f(x0)| < ε
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donc on a

∀x ∈ R, |x− x0| < η ⇒ |f(x)− f(x0)| < ε.

On a donc prouvé P1. Ainsi, l'implication P3 ⇒ P3 est vraie.

Les implications P1 ⇒ P2, P2 ⇒ P3 et P3 ⇒ P1 étant vraies, les trois propositions

sont équivalentes.

Exercice 5 :

Soient (x1, ..., xn, y1, .., yn) 2n réels tels que

∀k ∈ J1, nK , xk =

k∑
j=1

(
k

j

)
yj

Montrons la formule d'inversion

∀k ∈ J1, nK , yk =

k∑
j=1

(−1)k−j

(
k

j

)
xj

1. Soit k ∈ J1, nK, calculons

S =

k∑
j=1

(−1)k−j

(
k

j

)
xj .

On a

S =

k∑
j=1

(−1)k−j

(
k

j

)[ j∑
i=1

(
j

i

)
yi

]
=

∑
1≤i≤j≤k

(−1)k−j

(
k

j

)(
j

i

)
yi

donc

S =

k∑
i=1

k∑
j=i

(−1)k−j

(
k

j

)(
j

i

)
yi =

k∑
i=1

yi

 k∑
j=i

(−1)k−j

(
k

j

)(
j

i

)
︸ ︷︷ ︸

(∗)

.

Déterminons (∗), en remarquant que(
k

j

)(
j

i

)
=

k!

(k − j)!i!(j − i)!(k − i)!
=

(
k

i

)(
k − i

k − j

)
.

Ainsi :

k∑
j=i

(−1)k−j

(
k

j

)(
j

i

)
=

(
k

i

) k∑
j=i

(−1)k−j

(
k − i

k − j

)

=

(
k

i

)k−i∑
p=0

(−1)p
(
k − i

p

)
=

(
k

i

)
(1− 1)p

=

{
0 si k ̸= i
1 sinon

Par conséquent, S = yk ; ce qui prouve que

∀k ∈ J1, nK , yk =

k∑
j=1

(−1)k−j

(
k

j

)
xj
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2. Pour tout k ∈ J1, nK, posons

P (k) : ”yk =

k∑
j=1

(−1)k−j

(
k

j

)
xj”

Initialisation : Par dé�nition, x1 =

1∑
j=1

(
1

j

)
yj = y1 et

1∑
j=1

(−1)k−j

(
k

j

)
xj = x1

donc y1 =

1∑
j=1

(−1)1−j

(
1

j

)
xj et P (1) est vraie.

Hérédité : Soit p ∈ J1, n− 1K tel que

∀k ∈ J1, pK , yk =

k∑
j=1

(−1)k−j

(
k

j

)
xj

Montrons que l'on a P (p+ 1).

On a

xp+1 =

p+1∑
j=1

(
p+ 1

j

)
yj =

p∑
j=1

(
p+ 1

j

)
yj + yp+1

donc

yp+1 = xp+1 −
p∑

j=1

(
p+ 1

j

)
yj

Par hypothèse de récurrence, on en déduit que

yp+1 = xp+1 −
p∑

j=1

(
p+ 1

j

)( j∑
k=1

(−1)k−j

(
j

k

)
xk

)

donc

yp+1 = xp+1 −
∑

1≤k≤j≤p

(
p+ 1

j

)
(−1)k−j

(
j

k

)
xk

puis

yp+1 = xp+1 −
p∑

k=1

p∑
j=k

(
p+ 1

j

)
(−1)k−j

(
j

k

)
xk

soit

yp+1 = xp+1 −
p∑

k=1

 p∑
j=k

(−1)k−j

(
p+ 1

j

)(
j

k

)xk

Comme (
p+ 1

j

)(
j

k

)
=

(p+ 1)!

k!(j − k)!(p+ 1− j)!
=

(
p+ 1− k

j − k

)
,

on en déduit que

yp+1 = xp+1 −
p∑

k=1

 p∑
j=k

(−1)k−j

(
p+ 1− k

j − k

)(p+ 1

k

)
xk

= xp+1 −
p∑

k=1

(
p−k∑
m=0

(−1)m
(
p+ 1− k

m

))(
p+ 1

k

)
xk

= xp+1 +

p∑
k=1

(−1)p+1−k

(
p+ 1

k

)
xk

=

p+1∑
k=1

(−1)p+1−k

(
p+ 1

k

)
xk

Or pour tout k ∈ J1, pK, on a :

p−k∑
m=0

(−1)m
(
p+ 1− k

m

)
=

p+1−k∑
m=0

(−1)m
(
p+ 1− k

m

)
− (−1)p+1−k

(
p+ 1− k

p+ 1− k

)
= (1− 1)p+1−k − (−1)p+1−k = −(−1)p+1−k

car p+ 1− k > 0.

Ainsi, on a :

yp+1 = xp+1 +

p∑
k=1

(−1)p+1−k

(
p+ 1

k

)
xk

=

p+1∑
k=1

(−1)p+1−k

(
p+ 1

k

)
xk

donc P (p+ 1) est vraie.

On a donc prouvé que :

∀k ∈ J1, nK , yk =

k∑
j=1

(−1)k−j

(
k

j

)
xj
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