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Exercice 1 :

1. Il est inutile de recopier l'énoncé mais si on le souhaite, on peut écrire
"Résolvons l'équation z4 − z3 + z2 − z + 1 = 0 d'inconnue z ∈ C" mais on
n'écrit PAS : "On a z4 − z3 + z2 − z + 1 = 0" ou "z4 − z3 + z2 − z + 1 = 0
sans phrase"

Soit z ∈ C, on a

z4 − z3 + z2 − z + 1 =

4∑
k=0

(−z)
k
=


1− (−z)

5

1 + z
si z ̸= −1

5 sinon

Or, (−z)
5
= 1 ⇔ ∃k ∈ J0, 4K : −z = e2ikπ/5 ⇔ ∃k ∈ J0, 4K : z = −e2ikπ/5.

Ainsi l'ensemble des solutions est S = {−e2ikπ/5, k ∈ J1, 4K}
2. Soit z ∈ C \ {i}, on a(

z + i

z − i

)2

+

(
z + i

z − i

)
+ 1 = 0 ⇔ z + i

z − i
est racine du polynôme X2 +X = 1

⇔ z + i

z − i
∈ {j, j2}

Or,
z + i

z − i
= j ⇔ z (1− j) = −i (1 + j) ⇔ z = −i

eiπ/3
(
e−iπ/3 + eiπ/3

)
eiπ/3

(
e−iπ/3 − eiπ/3

)
⇔ z = −i

cos (π/3)

−i sin (π/3)
⇔ z =

√
3

3

et
z + i

z − i
= j2 ⇔ z

(
1− j2

)
= −i

(
1 + j2

)
⇔ z = −i

e2iπ/3
(
e−2iπ/3 + e2iπ/3

)
e2iπ/3

(
e−2iπ/3 − e2iπ/3

)
⇔ z = −i

cos (2π/3)

−i sin (2π/3)
⇔ z = −

√
3

3

Ainsi l'ensemble des solutions est S =

{√
3

3
,−

√
3

3

}

On pouvait aussi résoudre directement : Soit z ∈ C \ {i}, on a donc(
z + i

z − i

)2

+

(
z + i

z − i

)
+ 1 = 0 ⇔ (z + i)2 + (z + i)(z − i) + (z − i)2 = 0

⇔ z2 + 2iz − 1 + z2 + 1 + z2 − 2iz − 1 = 0

⇔ 3z2 − 1 = 0

Ainsi l'ensemble des solutions est S =

{√
3

3
,−

√
3

3

}

Exercice 2 : Soit u = e2iπ/5.

1. (a) Comme u ̸= 1, on a 1+u+u2+u3+u4 =
1− u5

1− u
= 0. D'après les relations

coe�cients/racines, α et β sont les deux racines du polynôme X2 +X − 1
si, et seulement si, α + β = −1 et αβ = −1 Or, on vient de prouver que
1 + α+ β = 0 et d'autre part, on a

αβ =
(
u+ u4

) (
u2 + u3

)
= u3

(
1 + u3

)
(1 + u) = u3

(
1 + u+ u3 + u4

)
= −u5 = −1

Par conséquent, α et β sont les deux racines du polynôme X2 +X − 1.

On aurait aussi pu prouver que α et β étaient racines de X2 + X − 1 et

que α ̸= β.

(b) Le discriminant associé au polynôme X2+X−1 est ∆ = 5 donc les racines

sont
−1±

√
5

2
.

Or α = cos

(
2π

5

)
+ i sin

(
2π

5

)
+ cos

(
8π

5

)
+ i sin

(
8π

5

)
= 2 cos

(
2π

5

)
Comme

2π

5
∈
[
0,

π

2

]
, α ≥ 0 donc α est la racine positive de X2+X−1 = 0

d'où

cos

(
2π

5

)
=

−1 +
√
5

4

2. On note A0, A1, A2, A3 et A4 les points d'a�xes respectives 1, u, u2, u3, u4

dans le plan a�ne rapporté au repère orthonormal
(
O, i⃗, j⃗

)
.

(a) La droite (A1A4) a pour équation x = cos

(
2π

5

)
car cos

(
2π

5

)
= cos

(
4π

5

)
donc H a pour coordonnées

(
cos

(
2π

5

)
, 0

)
.
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(b) Comme le vecteur
−→
ΩB a pour coordonnées (1/2, 1), ΩB =

√
5/4. Les abs-

cisses des points M et N sont donc 1/2±
√

5/4.

Donc les coordonnées des points M et N sont (α, 0) et (β, 0)

Comme α = 2 cos

(
2π

5

)
, on en déduit que H est le milieu de [OM ] .

(c) On trace le cercle C1 de centre O passant par A0. Soit C son autre inter-
section avec la droite (OA0). On construit le milieu Ω du segment [C,O]
comme intersection de la droite (OA0) et de l'intersection de la médiatrice
du segment [C,O]. Cette dernière s'obtient en joignant les points d'inter-
section de deux cercles de même rayons et centrés sur C et O.

De même, on obtient B comme intersection de C1 et de la médiatrice du
segment [C,A0]. On construit alors le cercle C de centre Ω passant par B.
On considère son intersection M avec la demi-droite [0, A0).

Les point A1 et A4 sont obtenus comme intersection du cercle C1 et de la
médiatrice du segment [O,M ].

Le point A2 est obtenu comme intersection de C1 et du cercle de centre A1

et de rayon A0A1.

Le point A3 est obtenu comme intersection de C1 et du cercle de centre A4

et de rayon A0A1.

Exercice 3 :

On considère l'équation à coe�cients complexes : z3 + az2 + bz + c = 0, et on note
P (X) = X3 + aX2 + bX + c.

1. (a) Pour tout complexe α, le coe�cient de X2 du polynôme P (X + α) est
3α+ a. Ainsi, le coe�cient du terme de degré deux du polynôme Q (X) =

P (X + α) est nul si et seulement si α = −a/3 .

(b) Par identi�cation, on a

p = b− a2/3 et q = 2a3/27− ab/3 + c

On s'est ainsi ramené à résoudre l'équation (∗) : z3 + pz + q = 0

2. Comme (u+ v)
3
= u3 + v3 + 3

(
u2v + uv2

)
, l'équation devient

z3 + pz + q = u3 + v3 + (u+ v) (3uv + p) + q = 0

3. Le couple (u, v) ∈ C2 est l'unique solution à l'ordre près du système{
z = u+ v

3uv + p = 0

si et seulement si le polynôme (X − u) (X − v) est égal à X2 − zX − p/3.

Or, pour tout complexe z le polynôme X2−zX−p/3 admet deux racines com-

plexes ce qui prouve que le système a une unique solution (à l'ordre près) .

4. Si z est solution de (∗), alors

u3 + v3 + q = 0 et u3v3 = (−p/3)
3
= −p3/27

Par conséquent, u3 et v3 sont les racines du polynôme X2 + qX − p3/27.

5. Réciproquement, si u3 et v3 sont les racines du polynôme X2+ q− p3/27 alors
u3 + v3 + q = 0 mais la relation u3v3 = −p3/27 n'implique pas forcément
3uv + p = 0.

Ainsi, si u3 et v3 sont les racines du polynôme X2 + qX − p3/27 et si
3uv + p = 0 alors z = u+ v est solution de (∗).

Notons r1 et r2 les racines du polynôme X2+ qX−p3/27 ; ρ1 et ρ2 des racines
cubiques de r1 et r2 puis S ′ = {ρ1, jρ1, j2ρ1, ρ2, jρ2, j2ρ2}
On a donc montré qu'un complexe z était racine de X3 + pX + q si, et

seulement si, ∃(u, v) ∈ S ′2 :

{
z = u+ v

3uv + p = 0
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Si p = 0 alors X3+pX+q a pour racines les racines troisième de −q. Supposons
désormais que p ̸= 0 ce qui implique r1r2 ̸= 0 puis ρ1ρ2 ̸= 0

Grâce aux relation coe�cients/racines, ρ31ρ
3
2 = −p3/27 donc si u ∈ S ′ alors

u3 ∈
{
r31, r

3
2

}
puis

(
− p

3u

)3
∈
{
r31, r

3
2

}
puis − p

3u
∈ S ′

Par conséquent, l'ensemble des racines de X3 + pX + q est

S = {ρ1 −
p

3ρ1
, jρ1 −

p

3jρ1
, j2ρ1 −

p

3j2ρ1
, ρ2 −

p

3ρ2
, jρ2 −

p

3jρ2
, j2ρ2 −

p

3j2ρ2
}

En�n, comme r31r
3
2 = −p3/27, il existe k0 ∈ J0, 2K tel que r1r2 = −p

3
jkk0 .

Ainsi, pour tout k ∈ Z, ρ2jk − p

3jkρ2
= − p

3j−k−k0ρ1
+ ρ1j

−k−k0 puis

S =

{
ρ1 −

p

3ρ1
, jρ1 −

pj2

3ρ1
, j2ρ1 −

pj

3ρ1

}
6. Si p et q sont des réels alors ∆ = q2 + 4p3/27 aussi.

• Si ∆ ≥ 0 alors les solutions de (∗) sont(
−q +

√
∆

2

)1/3

+

(
−q −

√
∆

2

)1/3

, j

(
−q +

√
∆

2

)1/3

+j2

(
−q −

√
∆

2

)1/3

et

j2

(
−q +

√
∆

2

)1/3

+ j

(
−q −

√
∆

2

)1/3

La première racine est réelle et les deux dernières se réécrivent, grâce à la
relation 1 + j + j2 = 0,

j

(−q +
√
∆

2

)1/3

−

(
−q −

√
∆

2

)1/3
−

(
−q −

√
∆

2

)1/3

et

j2

(−q +
√
∆

2

)1/3

−

(
−q −

√
∆

2

)1/3
−

(
−q −

√
∆

2

)1/3

Elles sont donc réelles si et seulement si ∆ est nul.

• Si ∆ < 0 et si on note
−q + i

√
−∆

2
= ρeiθ alors les solutions de (∗) sont

3
√
ρ
(
eiθ/3 + e−iθ/3

)
, 3

√
ρ
(
jeiθ/3 + j2e−iθ/3

)
et 3

√
ρ
(
j2eiθ/3 + je−iθ/3

)

qui sont toutes les trois réelles car respectivement égales à :

2 3
√
ρ cos (θ/3) , 2 3

√
ρ cos (θ/3 + 2π/3) et 2 3

√
ρ cos (θ/3− 2π/3)

Par conséquent,

Les solutions de (∗) sont toutes réelles si et seulement si ∆ = q2 + 4p3/27 ≤ 0.

Si on fait l'étude des variations du polynôme Q, on obtient :

• Si p ≥ 0 alors l'application x 7→ Q (x) est strictement croissante donc Q
admet au plus une racine réelle. Ainsi, toutes les racines de Q sont réelles si
et seulement si Q a une racine triple ce qui est équivalent à p = q = 0.

• Si p < 0 alors l'application x 7→ Q (x) est strictement croissante sur ] −
∞,−

√
−p/3], strictement décroissante sur [−

√
−p/3,

√
−p/3] et strictement

croissante sur [
√
−p/3,∞[.

Comme Q
(
−
√
−p/3

)
=

−2p

3

√
−p/3 + q et Q

(√
−p/3

)
=

2p

3

√
−p/3 + q, le

polynôme Q a trois racines réelles si et seulement si

2p

3

√
−p/3 < q <

−2p

3

√
−p/3

i.e. si et seulement si q2 < −4p3/27.

On retrouve que le polynôme Q a trois racines réelles si et seulement si ∆ ≤ 0.

7. Avec les notations précédentes, on a p = q = −6 donc ∆ = 4. Les racines de Q
sont donc

3
√
2 +

3
√
4 , j

3
√
2 + j2

3
√
4 et j2

3
√
2 + j

3
√
4

Les solutions de x3 − 3x2 − 3x− 1 = 0 sont donc

3
√
2 +

3
√
4 + 1 , j

3
√
2 + j2

3
√
4 + 1 et j2

3
√
2 + j

3
√
4 + 1

3


