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Exercice 1 :

pose :
AAB =(AUB)\ (AN B)

Soient A, B et C des parties de E
1. Illustrer la définition de AAB par un dessin.

2. Comme AUB=BUAet ANB=BNA,on abien | AAB = BAA

3.0naAUE=FEet ANE=A,ona|AAE = B\ A= 4

De méme, AUD=Aet AND =0, donc| AAD = A
AUA=ANA=A,donc|AAA =10
AUA=FEet ANA=), donc

4. Tout d’abord, on remarque que

Donc | AAB = (B\ A)U(A\ B)|
Enfin,ona A\ B=ANB =B\ Aet,de méme B\ A= A\ B, donc

AAB=(A\B)U(B\A)=(B\A)U(A\ B) = AAB
Donc | AAB = AAB
5. Par définition, AAB = (AU B)N AN B donc

laap =1auBlyrg = (1a+1p —141p)(1 —141p)
=14+1p— 141 — 141 — 1415+ 141p

Donc 1AAB:1A+1B_21A1B‘

Soit E un ensemble. Pour tout couples (A, B) de parties de F, on

6. On a

(ANB)A(ANC) =[(ANB)U(ANC)N(ANBNC))
=[AN(BUC)N(AUBNC)
=[An(BUC)NAJU[AN(BUC)NBNC]
=0 U[AN (BAQ)]

Donc ] AN (BAC) = (ANB)A(ANC) \

ou, en utilisant les fonctions indicatrices :

laaac) =1la+1p+1¢c —21plc —214(1p + 1¢ — 21p1¢)
=144+15—-21415+1c+21c(1a +15 —2141p)

= 1aaB)ac

Donc | AA(BAC) = (AAB)AC |

.Ona

AA(BAC) = (ANBAC) U (AN (BAC))
Or, BAC = (BNC)U(CNB) et BAC=(BNC)U(BNC) donc

AA(BAC) = (AN((BNC)Uu(BNC)U(AN((BNC)u(CN B)))
=(ANBNC)U(ANBNC)U(ANBNC)U(ANBNC)

En échangeant les roles joués par A et C, on a AA(BAC) = CA(BAA) donc

| AA(BAC) = (AAB)AC |

ou, en utilisant les fonctions indicatrices :

lansac) =1a(lp +1c —21plc) = 14l + 14lc — 2(141p5)(1alc)
=1anB +1anc — 21anBlanc
= lanB)A(4An0)

Donc | AN (BAC) = (ANB)A(ANC)|

. Pour tout entier n non nul, on définit 'assertion H(n) : "si (Ax)i<r<n €st une

famille de n parties de E, alors A;AAs...AA, est 'ensemble des éléments de
E appartenant & un nombre impair de parties parmi A;, As,.., 4,"

Les assertions H(1) et H(2) sont vraies. Supposons H(n) vraie pour un certain
entier non nul.

Soit (Ak)i1<k<n+1 est une famille de +1n parties de E.

Soit x € A1 AAs.. . AA, 11 = (A1AAs. .AA,)AA, 1 alors



10.

11.

— soit ¢ € (A1AA2..AA,) et © € A, 41 et dans ce cas x appartient & & un
nombre impair de parties parmi A;, As,.., A, et n’appartient pas & A, 1
donc x appartient 4 & un nombre impair de parties parmi Ay, Ag,.., Apy1-

— soit z & (A1AAs...AA,) et © € A1 et dans ce cas x appartient & & un
nombre pair de parties parmi A, As,.., A, et appartient & A, ;1 donc z
appartient & & un nombre impair de parties parmi A;, As,.., Apy1.

Réciproquement, si x appartient & un nombre impair de parties parmi Aq,

Ag,.., An+1 alors

— soit = appartient & A, 11 et donc x appartient & un nombre pair de parties
parmi A;, Ag,.., A, ie. x € AjAAs...AA, et ainsi
x € (AlAAQAAn)AAn+1 = AlAAQ...AAn+1.

— soit x n’appartient pas & A, 41 et donc z appartient & un nombre impair
de parties parmi Ay, As,.., A, d’oul
x € (A1AAs. .. AA)AA L1 = A1AAs L AA, L.

Ainsi, H(n + 1) est vérifiée.

Par conséquent, pour tout entier n, l’assertion H(n) est vraie.

On a déja montré que )AB = B.

Réciproquement, supposons que AAB = B et que A soit non vide alors il

existe z € A et

— soit x € B et dans ce cas, z € AN B ce qui est impossible car x appartient
aB=AAB

— soit € B doncx € ANB C AAB puis x € B ce qui est impossible.

Par conséquent, AAB =B = A = puis ’ AAB=B & A= @‘

D’apres la question précédente et la question 4, on a :

AAB=B & AAB=B & A=0< A=E.

Donc

AMB=B & A=E|

Supposons AAB = AAC et montrons que B = C.

Soit € BN C alors

— soit z € A et alors © € AAC donc x € AABN(ANB)=10

— soit z € A et alors x € AAB donc z € AACN(ANC) =10

Donc BNC = i.e. B C C. Par symétrie, on a C C B puis B = C. Ainsi

|AAB = AAC = B=C|

Exercice 2 : Soit f € FZ.

1. Démontrer que ¥(A, B) € P(E) x P(F), f(Anf'(B)) = f(4A)NB.

Soit (A, B) € P(E) x P(F).
Soit y € f (Aﬁf_l(B)). Par définition, il existe 2 € AN f~(B) tel que
y = f(x). Comme x € A, f(zx) € f(A) et comme z € f~1(B), f(x) € B. Ainsi
y € f(A)N B, ce qui prouve | f (AN f~'(B)) C f(4) N B.

Réciproquement soit z € f(A) N B. Par définition il existe a € A tel que x =
f(a). Comme f(a) =2 € B,onaac f'(B) doncac AN f~!(B). Par suite

x=f(a) € f (Aﬂf_l(B)), ce qui prouve que | f(A)NB C f (Aﬂf_l(B)) .

Par suite | V(A, B) € P(E) x P(F), f(Anf~'(B)) = f(A)nB.

2. Montrer que f est bijective si et seulement si VA € P(E), f(A) = f(A)

e Supposons f bijective . Soit A € P(E), montrons que f(A) = f(A).
Soit = € f(A). Il existe donc b € A tel que x = f(b). Pour tout a € A, b # a,
Pinjectivité de f implique donc que, pour tout a € A, f(b) # f(a). Par suite

= f(b) & f(A) cest-a-dire = € f(A). On a donc prouvé | f(A) C f(A).

Soit z € f(A). Comme f est surjective, il existe t € E tel que = = f(t).
Comme z ¢ f(A),t & Adonct € A. Ainsi x = f(t) € f(A), ce qui prouve que

f(4) c f(4).

e Supposons que VA € P(E), f(A) = f(A) et montrons que f est bijective.
On a f(E) = f(0) = f(0) = F donc f est surjective.
Soit (z,2') € E? tel que z # ’. On a 2’ € {x} donc

fa') € f{z}) = F({z}) = {f(x)}

donc f(x) # f(2') ce qui prouve l'injectivité de f.

Ainsi f est bijective si et seulement si VA € P(E), f(A) = f(A)



Exercice 3 : Soit f : z —

zZ4+1

zZ—1

1. Pour tout complexe z différent de i, le complexe z i_l existe.
De plus, pour tout complexe z, on a
f)=1lez4+i=2—1
donc f(z) # 1.
L’application f est donc a valeurs dans C\ {1}.
Soit Z e C\ {1} et ze C\{i}. On a
[e) =26 =T e ati=2(:—1)
car z # i. Ainsi
(142
f(z):Z@z(Z—l):i+iZ@z:%
car Z # 1.
Par conséquent, tout complexe Z € C\ {1} admet un unique antécédent par f
(1+ 2
gal & % Autrement dit, f réalise une bijection de C\ {i} dans C\ {1}
et on a
(1+Z
e\ {1} = C\ {5}, z—~ %
. , w241 o
. Soit z € R. On a |f(x)|* = o 1 donc |f(z)| = 1. Ainsi, f(R) c U.

De plus, Papplication f est a valeurs dans C\ {1}.
On a donc ’ f(R) c U\ {1} ‘

. . (1+2z

Réciproquement, soit z € U\ {1}, alors z = f(t) avec t = ! Il reste a
-

prouver que t est réel.

Comme z est de module 1, il existe un réel 0 tel que z = €*. Par conséquent :

_ i1+ ) 2icos(0/2)

i 2isin(6/2) cR
Par suite, | U\ {1} C f(R) ‘
. Soit z € R différent de 1.
On a f(iz) = z.m—i—z _rl GRdonc’f(iR\{i}) CR.‘

T —1 rx—1

i(l1+2)

. Comme t est

Réciproquement, soit € R, alors z = f(t) avec t =

imaginaire pur différent de 4, on a donc ’R C fERN\ {i}). ‘

4. Soit z un complexe distinct de i alors

f(2) = 24 _ |22 + 2iReé(z) — 1

z—1 |z — 1|2

Ainsi,
zeDeRe(f(2) <0< f(2) Q™

Par suite, comme f est surjective, | f(D) = Q™.

Soit z un complexe distinct de ¢ alors

2€Q” ©Re(z) <0 Im(f(2) <0< f(z) e P™

Par suite, comme f est surjective, | f(Q7) =P.

Complément : On cherche & généraliser les résultats obtenus
Soient z1, 29, 23 et z4 quatre nombres complexes deux & deux distincts. On définit
leur birapport par
(2’1 - 2’3)(2’2 - 24)
(21 — z4)(22 — 23)
1. Soient My, My, M3 et My les points d’affixes z1, 22, 23 et z4.
L’argument du Dbirapport [z1,29,23,24] est la différence des angles

e

M1M4, M1M3 et M2M4, M2M3.

[Zla 22, 23, Z4] =

Si les points sont alignés alors ces angles sont tous les deux nuls modulo 7 et
Pargument du birapport [z1, 23, 23, 24] est lui aussi nul modulo 7. Le birapport
est donc réel.

Si les points sont cocycliques et iQ\ est le centre du cercle passant par A My,

— = — =
Ms, M3 et My alors 'angle My My, My Ms est égal & la moitié de QMy, QM5

modulo 7 et il en est de méme pour angle MyMy, Mo M3 Ainsi, 'argument
du birapport [21, 22, 23, 24] est nul modulo .

Ainsi, si les points d’affixes 21, 22, 23 et z4 sont alignés ou cocycliques alors
birapport [z1, 22, 23, 24] est réel

Réciproquement supposons que le birapport [z1, 22, 23, 24] soit réel.

z1— % Zo — Z

M est réel donc M
. (21— 23) (22 — 23)

— =

aussi ce qui prouve que l'angle MMy, MsMs est plat puis que les points My,

Moy, M3 et My sont alignés.

Sinon, il existe un unique cercle passant par M7, M3 et M4 constitué des points

Ms, My et des points M tels que MMy, MMz = MyMy, MaMs [rr]. Donc les

points My, My, M5 et My son cocycliques.

Si les points My, M3 et M, sont alignés alors




Par conséquent,

’ [21, 22, 23, 24] € R ssi les points d’affixes z;, 29, 23 et z4 sont alignés ou cocycliqul

Soient a, b, ¢ et d sont quatre nombres complexes tels que ad — bc soit non nul.

On définit la fonction
az+b

f:z>—>cz+d

. Soit z et 2’ deux complexes tels que z # —d/c. On a
fR)=72 e (cz+d) =az+bs 2(c2' —a) =b—d7

b—dz

cz' —a
Si 2’ = a/c alors il admet un antécédent si et seulement si b — dz’ = 0 ce qui
est en contradiction avec I’hypothése ad — be # 0.

Ainsi, si 2’ # a/c alors 2’ admet un unique antécédent

Par conséquent, si ¢ est non nul alors f réalise une bijection de C\ {—d/c}
dans C\ {a/c} dont la réciproque est donnée par

C\{a/c} — C\{-d/c}
b—dz

cz—a

z

Si ¢ = 0 alors ad est non nul et f réalise une bijection de C dans lui-méme
d’inverse

CcC —C
dz—b
a

z =

. Si c est nul alors f est une similitude directe.

Sinon,
a 1 bc — ad

Vz € C\ {—d/c}, f(z)zz—'_;?Td/c

Ainsi, f =¢oioy on

bc — ad
Yz z4d/e et qS:z»—)%—!— €4

z
2

. Montrons que les similitudes directes et ¢ conservent le birapport.

Soient A et B deux complexes avec A nonnulet g : z+— Az + B.

Pour tous complexes distincts z1, 22, 23 et z4, on a :

o (Az1 — Az )(AZQ — AZ4) o
l9(21), 9(z2), 9(z0), 9(e0)] = (o —o s A = [ 22 20,2

Si les complexes z1, 2o, 23 et z4 sont non nuls alors

"—z) (m—a) (=)

-1 1 —
-1 -1 _—1 _—1 (21 — 25 (%
P e T

R LR BT

Comme composée de fonctions conservant le birapport, f conserve le birapport.

. Soit D une droite et A, B et C trois points distincts de D d’affixes respectives

21, 2 et z3.
Pour tout z € C\ {a/c}, on a

z€D & [z1,29,23,2) € RS [f(21), f(22), f(23), f(2)] € R

Comme f est bijective les points d’affixes respectives f(z1), f(z2) et f(z3) sont
distincts.

S’ils sont alignés alors si on appelle D’ la droite reliant ces points, alors on a

/(D) = {z€C\ {a/c} : M(z) €D} |

Sinon, il existe un unique cercle C’ passant pas ces trois points et on a

/(D)= {z€C\{a/e} : M(z) €}

Une condition nécessaire et suffisante pour étre dans le premier cas est donc
Palignement des points d’affixes f(z1), f(z2) et f(z3).

. Les points d’affixe f(z1), f(z2) et f(z3) sont alignés si et seulement si le rapport

flz) = fz2) _ (2 —21)(czs +d)
f(z1) = f(z3) (23— 21)(cz2 + d)

est réel donc si et seulement si le birapport [z1, 22, 23, —d/c] est réel donc si, et
seulement si, les points d’affixes z1, 22, 23 et —d/c sont alignés ou cocycliques.

.Ona

21 — 23

[f(21), f(22), f(23), 0/ c] =

donc le birapport [f(z1), f(22), f(23),a/c] est réel donc si, et seulement si, les
points d’affixes z1, 2o, 23 sont alignés.

Z2 — 23

. Soit I le point d’affixe —d/c et J celui d’affixe a/c

Soit D une droite passant par les points distincts d’affixes z1, z5 et z3 différente
de —d/c.

= = [21,22723,24]



— Si I appartient & la droite D alors si on appelle D’ la droite reliant les points
d’affixes f(z1), f(22) et f(z3), celle-ci passe par J et on a :

FzeD\{-d/c} : M(z) €D})={z€C : M(z) e D'\ {J}}

— Si I n’appartient pas a la droite D alors si on appelle C’ le cercle passant
par les points d’affixes f(z1), f(22) et f(z3), celui-ci passe par J et on a :

f{zeD: M(z)eD})={z€C: M(2) e D'\ {J}}

Soit C un cercle passant par les points distincts d’affixes z1, 25 et z3 différente

de —d/c.

— Si I appartient au cercle C alors si on appelle D’ la droite reliant les points
d’affixes f(z1), f(22) et f(z3), celle-ci ne passe pas par J et on a :

f{zeD\{-d/c} : M(2)eC})={z€C: M(z) eD'}

— Si I n’appartient pas au cercle C alors si on appelle C’ le cercle passant par
les points d’affixes f(z1), f(22) et f(z3), celui-ci ne passe pas par J et on
a:
fH{zeD: M(z)eC})={z€C: M(z)eC'}




