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Exercice 1 : Soit E un ensemble. Pour tout couples (A,B) de parties de E, on
pose :

A∆B = (A ∪B) \ (A ∩B)

Soient A, B et C des parties de E

1. Illustrer la dé�nition de A∆B par un dessin.

2. Comme A ∪B = B ∪A et A ∩B = B ∩A, on a bien A∆B = B∆A

3. On a A ∪ E = E et A ∩ E = A, on a A∆E = E \A = Ā

De même, A ∪ ∅ = A et A ∩ ∅ = ∅, donc A∆∅ = A

A ∪A = A ∩A = A, donc A∆A = ∅

A ∪ Ā = E et A ∩ Ā = ∅, donc A∆Ā = E

4. Tout d'abord, on remarque que

A∆B = (A ∪B) \ (A ∩B)

= (A ∪B) ∩ (A ∩B)

= (A ∪B) ∩ (Ā ∪ B̄)

=
(
(A ∪B) ∩ Ā

)
∪
(
(A ∪B) ∩ B̄

)
= (B ∩ Ā) ∪ (A ∩ B̄)

Donc A∆B = (B \A) ∪ (A \B)

En�n, on a Ā \ B̄ = Ā ∩B = B \A et, de même B̄ \ Ā = A \B, donc

Ā∆B̄ = (Ā \ B̄) ∪ (B̄ \ Ā) = (B \A) ∪ (A \B) = A∆B

Donc A∆B = A∆B

5. Par dé�nition, A∆B = (A ∪B) ∩A ∩B donc

1A∆B = 1A∪B1A∩B = (1A + 1B − 1A1B)(1− 1A1B)

= 1A + 1B − 1A1B − 1A1B − 1A1B + 1A1B

Donc 1A∆B = 1A + 1B − 21A1B

6. On a

(A ∩B)∆(A ∩ C) = [(A ∩B) ∪ (A ∩ C)] ∩
(
A ∩B ∩ C)

)
= [A ∩ (B ∪ C)] ∩

(
A ∪B ∩ C

)
=

[
A ∩ (B ∪ C) ∩A

]
∪
[
A ∩ (B ∪ C) ∩B ∩ C

]
= ∅ ∪ [A ∩ (B∆C)]

Donc A ∩ (B∆C) = (A ∩B)∆(A ∩ C)
ou, en utilisant les fonctions indicatrices :

1A∆(B∆C) = 1A + 1B + 1C − 21B1C − 21A(1B + 1C − 21B1C)

= 1A + 1B − 21A1B + 1C + 21C(1A + 1B − 21A1B)

= 1(A∆B)∆C

Donc A∆(B∆C) = (A∆B)∆C

7. On a

A∆(B∆C) = (A ∩B∆C) ∪ (A ∩ (B∆C))

Or, B∆C = (B ∩ C) ∪ (C ∩B) et B∆C = (B ∩ C) ∪ (B ∩ C) donc

A∆(B∆C) = (A ∩ ((B ∩ C) ∪ (B ∩ C)) ∪ (A ∩ ((B ∩ C) ∪ (C ∩B)))

= (A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C) ∪ (A ∩B ∩ C)

En échangeant les rôles joués par A et C, on a A∆(B∆C) = C∆(B∆A) donc

A∆(B∆C) = (A∆B)∆C

ou, en utilisant les fonctions indicatrices :

1A∩(B∆C) = 1A(1B + 1C − 21B1C) = 1A1B + 1A1C − 2(1A1B)(1A1C)

= 1A∩B + 1A∩C − 21A∩B1A∩C

= 1(A∩B)∆(A∩C)

Donc A ∩ (B∆C) = (A ∩B)∆(A ∩ C)

8. Pour tout entier n non nul, on dé�nit l'assertion H(n) : "si (Ak)1≤k≤n est une

famille de n parties de E, alors A1∆A2...∆An est l'ensemble des éléments de

E appartenant à un nombre impair de parties parmi A1, A2,.., An"

Les assertions H(1) et H(2) sont vraies. Supposons H(n) vraie pour un certain

entier non nul.

Soit (Ak)1≤k≤n+1 est une famille de +1n parties de E.

Soit x ∈ A1∆A2...∆An+1 = (A1∆A2...∆An)∆An+1 alors
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� soit x ∈ (A1∆A2...∆An) et x ̸∈ An+1 et dans ce cas x appartient à à un

nombre impair de parties parmi A1, A2,.., An et n'appartient pas à An+1

donc x appartient à à un nombre impair de parties parmi A1, A2,.., An+1.

� soit x ̸∈ (A1∆A2...∆An) et x ∈ An+1 et dans ce cas x appartient à à un

nombre pair de parties parmi A1, A2,.., An et appartient à An+1 donc x
appartient à à un nombre impair de parties parmi A1, A2,.., An+1.

Réciproquement, si x appartient à un nombre impair de parties parmi A1,

A2,.., An+1 alors

� soit x appartient à An+1 et donc x appartient à un nombre pair de parties

parmi A1, A2,.., An i.e. x ̸∈ A1∆A2...∆An et ainsi

x ∈ (A1∆A2...∆An)∆An+1 = A1∆A2...∆An+1.

� soit x n'appartient pas à An+1 et donc x appartient à un nombre impair

de parties parmi A1, A2,.., An d'où

x ∈ (A1∆A2...∆An)∆An+1 = A1∆A2...∆An+1.

Ainsi, H(n+ 1) est véri�ée.

Par conséquent, pour tout entier n, l'assertion H(n) est vraie.

9. On a déjà montré que ∅∆B = B.

Réciproquement, supposons que A∆B = B et que A soit non vide alors il

existe x ∈ A et

� soit x ∈ B et dans ce cas, x ∈ A∩B ce qui est impossible car x appartient

à B = A∆B
� soit x ∈ B donc x ∈ A ∩B ⊂ A∆B puis x ∈ B ce qui est impossible.

Par conséquent, A∆B = B ⇒ A = ∅ puis A∆B = B ⇔ A = ∅
10. D'après la question précédente et la question 4, on a :

A∆B = B ⇔ A∆B = B ⇔ A = ∅ ⇔ A = E.

Donc

A∆B = B ⇔ A = E

11. Supposons A∆B = A∆C et montrons que B = C.

Soit x ∈ B ∩ C alors

� soit x ∈ A et alors x ∈ A∆C donc x ∈ A∆B ∩ (A ∩B) = ∅
� soit x ∈ A et alors x ∈ A∆B donc x ∈ A∆C ∩ (A ∩ C) = ∅
Donc B ∩ C = ∅ i.e. B ⊂ C. Par symétrie, on a C ⊂ B puis B = C. Ainsi

A∆B = A∆C ⇒ B = C

Exercice 2 : Soit f ∈ FE .

1. Démontrer que ∀(A,B) ∈ P(E)× P(F ), f
(
A ∩ f−1(B)

)
= f(A) ∩B.

Soit (A,B) ∈ P(E)× P(F ).

Soit y ∈ f
(
A ∩ f−1(B)

)
. Par dé�nition, il existe x ∈ A ∩ f−1(B) tel que

y = f(x). Comme x ∈ A, f(x) ∈ f(A) et comme x ∈ f−1(B), f(x) ∈ B. Ainsi

y ∈ f(A) ∩B, ce qui prouve f
(
A ∩ f−1(B)

)
⊂ f(A) ∩B.

Réciproquement soit x ∈ f(A) ∩ B. Par dé�nition il existe a ∈ A tel que x =
f(a). Comme f(a) = x ∈ B, on a a ∈ f−1(B) donc a ∈ A ∩ f−1(B). Par suite

x = f(a) ∈ f
(
A ∩ f−1(B)

)
, ce qui prouve que f(A) ∩B ⊂ f

(
A ∩ f−1(B)

)
.

Par suite ∀(A,B) ∈ P(E)× P(F ), f
(
A ∩ f−1(B)

)
= f(A) ∩B.

2. Montrer que f est bijective si et seulement si ∀A ∈ P(E) , f(A) = f(A)

• Supposons f bijective . Soit A ∈ P(E), montrons que f(A) = f(A).

Soit x ∈ f(A). Il existe donc b ∈ A tel que x = f(b). Pour tout a ∈ A, b ̸= a,
l'injectivité de f implique donc que, pour tout a ∈ A, f(b) ̸= f(a). Par suite

x = f(b) ̸∈ f(A) c'est-à-dire x ∈ f(A). On a donc prouvé f(A) ⊂ f(A).

Soit x ∈ f(A). Comme f est surjective, il existe t ∈ E tel que x = f(t).
Comme x ̸∈ f(A), t ̸∈ A donc t ∈ A. Ainsi x = f(t) ∈ f(A), ce qui prouve que

f(A) ⊂ f(A).

• Supposons que ∀A ∈ P(E) , f(A) = f(A) et montrons que f est bijective.

On a f(E) = f(∅) = f(∅) = F donc f est surjective.

Soit (x, x′) ∈ E2 tel que x ̸= x′. On a x′ ∈ {x} donc

f(x′) ∈ f({x}) = f({x}) = {f(x)}

donc f(x) ̸= f(x′) ce qui prouve l'injectivité de f .

Ainsi f est bijective si et seulement si ∀A ∈ P(E) , f(A) = f(A)
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Exercice 3 : Soit f : z 7→ z + i

z − i
.

1. Pour tout complexe z di�érent de i, le complexe
z + i

z − i
existe.

De plus, pour tout complexe z, on a

f(z) = 1 ⇔ z + i = z − i

donc f(z) ̸= 1.

L'application f est donc à valeurs dans C \ {1}.
Soit Z ∈ C \ {1} et z ∈ C \ {i}. On a

f(z) = Z ⇔ z + i

z − i
= Z ⇔ z + i = Z(z − i)

car z ̸= i. Ainsi

f(z) = Z ⇔ z(Z − 1) = i+ iZ ⇔ z =
i(1 + Z)

Z − 1

car Z ̸= 1.

Par conséquent, tout complexe Z ∈ C \ {1} admet un unique antécédent par f

égal à
i(1 + Z)

Z − 1
· Autrement dit, f réalise une bijection de C \ {i} dans C \ {1}

et on a

f−1 : C \ {1} → C \ {i}, z 7→ i(1 + Z)

Z − 1
·

2. Soit x ∈ R. On a |f(x)|2 =
x2 + 1

x2 + 1
= 1 donc |f(z)| = 1. Ainsi, f(R) ⊂ U.

De plus, l'application f est à valeurs dans C \ {1}.
On a donc f(R) ⊂ U \ {1} .

Réciproquement, soit z ∈ U \ {1}, alors z = f(t) avec t =
i(1 + z)

z − 1
. Il reste à

prouver que t est réel.

Comme z est de module 1, il existe un réel θ tel que z = eiθ. Par conséquent :

t =
i(1 + eiθ)

eiθ − 1
=

2i cos(θ/2)

2i sin(θ/2)
∈ R

Par suite, U \ {1} ⊂ f(R) .
3. Soit x ∈ R di�érent de 1.

On a f(ix) =
ix+ i

ix− i
=
x+ 1

x− 1
∈ R donc f(iR \ {i}) ⊂ R.

Réciproquement, soit x ∈ R, alors z = f(t) avec t =
i(1 + z)

z − 1
. Comme t est

imaginaire pur di�érent de i, on a donc R ⊂ f(iR \ {i}).

4. Soit z un complexe distinct de i alors

f(z) =
z + i

z − i
=

|z|2 + 2iRé(z)− 1

|z − 1|2

Ainsi,

z ∈ D ⇔ Ré(f(z)) < 0 ⇔ f(z) ∈ Q−

Par suite, comme f est surjective, f(D) = Q−.

Soit z un complexe distinct de i alors

z ∈ Q− ⇔ Ré(z) < 0 ⇔ Im(f(z)) < 0 ⇔ f(z) ∈ P−

Par suite, comme f est surjective, f(Q−) = P−.

Complément : On cherche à généraliser les résultats obtenus

Soient z1, z2, z3 et z4 quatre nombres complexes deux à deux distincts. On dé�nit

leur birapport par

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)

(z1 − z4)(z2 − z3)

1. Soient M1, M2, M3 et M4 les points d'a�xes z1, z2, z3 et z4.

L'argument du birapport [z1, z2, z3, z4] est la di�érence des angles

̂−−−−→
M1M4,

−−−−→
M1M3 et

̂−−−−→
M2M4,

−−−−→
M2M3.

Si les points sont alignés alors ces angles sont tous les deux nuls modulo π et

l'argument du birapport [z1, z2, z3, z4] est lui aussi nul modulo π. Le birapport
est donc réel.

Si les points sont cocycliques et si Ω est le centre du cercle passant par M1,

M2, M3 et M4 alors l'angle
̂−−−−→

M1M4,
−−−−→
M1M3 est égal à la moitié de

̂−−−→
ΩM4,

−−−→
ΩM3

modulo π et il en est de même pour l'angle
̂−−−−→

M2M4,
−−−−→
M2M3 Ainsi, l'argument

du birapport [z1, z2, z3, z4] est nul modulo π.

Ainsi, si les points d'a�xes z1, z2, z3 et z4 sont alignés ou cocycliques alors

birapport [z1, z2, z3, z4] est réel

Réciproquement supposons que le birapport [z1, z2, z3, z4] soit réel.

Si les points M1, M3 et M4 sont alignés alors
(z1 − z4)

(z1 − z3)
est réel donc

(z2 − z4)

(z2 − z3)

aussi ce qui prouve que l'angle
̂−−−−→

M2M4,
−−−−→
M2M3 est plat puis que les points M1,

M2, M3 et M4 sont alignés.

Sinon, il existe un unique cercle passant parM1,M3 etM4 constitué des points

M3, M4 et des points M tels que
̂−−−→

MM4,
−−−→
MM3 ≡ ̂−−−−→

M2M4,
−−−−→
M2M3 [π]. Donc les

points M1, M2, M3 et M4 son cocycliques.
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Par conséquent,

[z1, z2, z3, z4] ∈ R ssi les points d'a�xes z1, z2, z3 et z4 sont alignés ou cocycliques.

Soient a, b, c et d sont quatre nombres complexes tels que ad− bc soit non nul.

On dé�nit la fonction

f : z 7→ az + b

cz + d

2. Soit z et z′ deux complexes tels que z ̸= −d/c. On a

f(z) = z′ ⇔ (cz + d)z′ = az + b⇔ z(cz′ − a) = b− dz′

Ainsi, si z′ ̸= a/c alors z′ admet un unique antécédent
b− dz′

cz′ − a
Si z′ = a/c alors il admet un antécédent si et seulement si b − dz′ = 0 ce qui

est en contradiction avec l'hypothèse ad− bc ̸= 0.

Par conséquent, si c est non nul alors f réalise une bijection de C \ {−d/c}
dans C \ {a/c} dont la réciproque est donnée par

C \ {a/c} → C \ {−d/c}

z 7→ b− dz

cz − a

Si c = 0 alors ad est non nul et f réalise une bijection de C dans lui-même

d'inverse

C → C

z 7→ dz − b

a

3. Si c est nul alors f est une similitude directe.

Sinon,

∀z ∈ C \ {−d/c}, f(z) =
a

c
+

1

c2
bc− ad

z + d/c

Ainsi, f = ϕ ◦ i ◦ ψ où

ψ : z 7→ z + d/c et ϕ : z 7→ a

c
+
bc− ad

c2
z

4. Montrons que les similitudes directes et i conservent le birapport.

Soient A et B deux complexes avec A non nul et g : z 7→ Az +B.

Pour tous complexes distincts z1, z2, z3 et z4, on a :

[g(z1), g(z2), g(z3), g(z4)] =
(Az1 −Az3)(Az2 −Az4)

(Az1 −Az4)(Az2 −Az3)
= [z1, z2, z3, z4]

Si les complexes z1, z2, z3 et z4 sont non nuls alors

[z−1
1 , z−1

2 , z−1
3 , z−1

4 ] =
(z−1

1 − z−1
3 )(z−1

2 − z−1
4 )

(z−1
1 − z−1

4 )(z−1
2 − z−1

3 )
=

(z3 − z1)(z4 − z2)

(z4 − z1)(z3 − z2)
= [z1, z2, z3, z4]

Comme composée de fonctions conservant le birapport, f conserve le birapport.

5. Soit D une droite et A, B et C trois points distincts de D d'a�xes respectives

z1, z2 et z3.

Pour tout z ∈ C \ {a/c}, on a

z ∈ D ⇔ [z1, z2, z3, z] ∈ R ⇔ [f(z1), f(z2), f(z3), f(z)] ∈ R

Comme f est bijective les points d'a�xes respectives f(z1), f(z2) et f(z3) sont
distincts.

S'ils sont alignés alors si on appelle D′ la droite reliant ces points, alors on a

f(D) = {z ∈ C \ {a/c} : M(z) ∈ D′}

Sinon, il existe un unique cercle C′ passant pas ces trois points et on a

f(D) = {z ∈ C \ {a/c} : M(z) ∈ C′}

Une condition nécessaire et su�sante pour être dans le premier cas est donc

l'alignement des points d'a�xes f(z1), f(z2) et f(z3).

6. Les points d'a�xe f(z1), f(z2) et f(z3) sont alignés si et seulement si le rapport

f(z1)− f(z2)

f(z1)− f(z3)
=

(z2 − z1)(cz3 + d)

(z3 − z1)(cz2 + d)

est réel donc si et seulement si le birapport [z1, z2, z3,−d/c] est réel donc si, et
seulement si, les points d'a�xes z1, z2, z3 et −d/c sont alignés ou cocycliques.

7. On a

[f(z1), f(z2), f(z3), a/c] =
z1 − z3
z2 − z3

donc le birapport [f(z1), f(z2), f(z3), a/c] est réel donc si, et seulement si, les

points d'a�xes z1, z2, z3 sont alignés.

8. Soit I le point d'a�xe −d/c et J celui d'a�xe a/c

Soit D une droite passant par les points distincts d'a�xes z1, z2 et z3 di�érente
de −d/c.
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� Si I appartient à la droite D alors si on appelle D′ la droite reliant les points

d'a�xes f(z1), f(z2) et f(z3), celle-ci passe par J et on a :

f ({z ∈ D \ {−d/c} : M(z) ∈ D}) = {z ∈ C : M(z) ∈ D′ \ {J}}

� Si I n'appartient pas à la droite D alors si on appelle C′ le cercle passant

par les points d'a�xes f(z1), f(z2) et f(z3), celui-ci passe par J et on a :

f ({z ∈ D : M(z) ∈ D}) = {z ∈ C : M(z) ∈ D′ \ {J}}

Soit C un cercle passant par les points distincts d'a�xes z1, z2 et z3 di�érente

de −d/c.
� Si I appartient au cercle C alors si on appelle D′ la droite reliant les points

d'a�xes f(z1), f(z2) et f(z3), celle-ci ne passe pas par J et on a :

f ({z ∈ D \ {−d/c} : M(z) ∈ C}) = {z ∈ C : M(z) ∈ D′}

� Si I n'appartient pas au cercle C alors si on appelle C′ le cercle passant par

les points d'a�xes f(z1), f(z2) et f(z3), celui-ci ne passe pas par J et on

a :

f ({z ∈ D : M(z) ∈ C}) = {z ∈ C : M(z) ∈ C′}

5


