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Exercice 1

Soit (a, b, c, d) ∈ C4 tel que c ̸= 0 et ad− bc ̸= 0. On dé�nit la suite u par u0 ∈ C et

∀n ∈ N, un+1 = f(un) avec f : C \ {−d/c} → C \ {a/c}, z 7→ az + b

cz + d

On suppose que u0 est tel que la suite soit bien dé�nie.

1. On suppose que u converge.

(a) Montrer que si u converge alors sa limite est racine d'une équation du

second degré (∗).
Supposons que la suite u converge vers ℓ ∈ C. On a alors lim

n→+∞
un+1 = ℓ,

lim
n→+∞

(aun + b) = aℓ+ b et lim
n→+∞

(cun + d) = cℓ+ d.

Pour a�rmer que lim
n→+∞

aun + b

cun + d
=

aℓ+ b

cℓ+ d
, il faut s'assurer que cℓ+ d ̸= 0.

Si c'était le cas, alors on aurait ℓ = −d/c car c ̸= 0 puis aℓ + b ̸= 0 car
ad− bc ̸= 0 ; ce qui impliquerait la divergence de la suite (un+1)n∈N.

Par conséquent, cℓ+ d ̸= 0 donc lim
n→+∞

aun + b

cun + d
=

az + b

cz + d
=

aℓ+ b

cℓ+ d
et, par

unicité de la limite ℓ =
aℓ+ b

cℓ+ d
puis ℓ (cℓ+ d) = aℓ+ b.

Ainsi, ℓ est racine du polynôme cX2 + (d− a)X − b qui est de degré 2 car

c ̸= 0.

(b) Soit r une racine de (∗). Montrer que un+1−r = (un−r)
ad− bc

(cun + d)(cr + d)
Par dé�nition

un+1 − r =
aun + b

cun + d
− r =

aun + b

cun + d
− ar + b

cr + d

car r est racine de (∗). Ainsi,

un+1 − r =
(aun + b) (cr + d)− (cun + d) (ar + b)

(cun + d)(cr + d)
=

(ad− bc)(un − r)

(cun + d)(cr + d)

(c) En déduire que u est constante si et seulement si un de ses terme est racine

de (∗)
Si u est constante à ℓ, alors elle converge vers ℓ donc, d'après la première
question, tous ses termes sont racines de (∗).
Réciproquement, si un des termes de u, un0 est égal à une racine r de (∗),
alors, d'après la question précédente, un0+1−r est nul, et par une récurrence
évidente, pour tout n ≥ n0, un = r.

De plus, si n0 > 0, alors
(ad− bc)(un0−1 − r)

(cun0−1 + d)(cr + d)
= 0. Comme ad− bc ̸= 0, on

en déduit que un0−1 = r ; puis, par une récurrence �nie évidente, que pour
tout n ≤ n0, un = r. La suite u est donc constante.

Désormais on suppose que u n'est pas constante.

2. On suppose que (∗) a deux racines distinctes r1 et r2.

(a) Montrer que la suite v =

(
un − r1
un − r2

)
n∈N

est bien dé�nie et géométrique de

raison λ.

Comme la suite u a été supposée non constante, alors, aucun de ses termes
n'est racine de (∗) donc, pour tout entier n, on a un ̸= r2. La suite v est
donc bien dé�nie.

De plus, pour tout entier n, on a :

vn+1

vn
=

un+1 − r1
un+1 − r2

un − r2
un − r1

ce qui d'après 1.b donne

vn+1

vn
=

(ad− bc)(un − r1)

(cun + d)(cr1 + d)

(cun + d)(cr2 + d)

(ad− bc)(un − r2)

un − r2
un − r1

=
cr2 + d

cr1 + d
·

La suite v est donc géométrique de raison λ =
cr2 + d

cr1 + d
·

(b) En déduire u en fonction de λ

Soit n ∈ N. On a vn = v0 λ
n =

un − r1
un − r2

donc un (1− v0λ
n) = r1 − r2v0λ

n.

Comme r1 ̸= r2, vn ̸= 1 donc

un =
r1 − r2v0λ

n

1− v0λn
=

r1(u0 − r2)− r2(u0 − r1)λ
n

u0 − r2 − (u0 − r1)λn
·

(c) En déduire la nature convergente ou divergente de u.

• Si |λ| < 1, alors lim
n→+∞

λn = 0 donc u converge vers r1.
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• Si |λ| > 1, alors lim
n→+∞

λ−n = 0 et , pour tout entier n,

un =
r1(u0 − r2)λ

−n − r2(u0 − r1)

(u0 − r2)λ−n − (u0 − r1)

donc u converge vers r2.

• Sinon |λ| = 1 et λ ̸= 1 car r1 ̸= r2. La suite (λn)n∈N est donc divergente.

Or, pour tout entier n, on a v0 λ
n =

un − r1
un − r2

. Comme v0 ̸= 1, si la suite u

converge vers ℓ ̸= r2, alors la suite (λn)n∈N et si la suite u converge vers
r2, alors, comme r1 ̸= r2, la suite (|λ|n)n∈N diverge.

Comme la suite (λn)n∈N est donc divergente et la suite (|λ|n)n∈N est
constante à 1, on en déduit que la suit u diverge.

3. On suppose que (∗) a une seule racine r0.

(a) Montrer que si w = (
1

un − r0
)n∈N alors

∀n ∈ N, wn+1 = wn +
2c

a+ d

Soit n ∈ N. D'après 1.b, on a

wn+1 =
(cun + d)(cr0 + d)

(ad− bc)(un − r0)
=

cr0 + d

ad− bc

c(un − r0) + cr0 + d

un − r0

De plus, comme le polynôme cX2 + (d− a)X − b n'a qu'une racine r0, on

en déduit que ad− bc =
(a+ d)2

4
et cr0 + d =

a+ d

2
puis

wn+1 =
2

a+ d

(
c+

a+ d

2
wn

)

donc wn+1 = wn +
2c

a+ d

(b) En déduire la nature de u.

La suite w est arithmétique de raison
2c

a+ d
donc, pour tout entier n, on a

wn = w0 +
2cn

a+ d
.puis un = r0 +

a+ d

w0 + 2cn
.

Comme |w0 + 2cn| ≥ 2|c|n− |w0|, on a lim
n→+∞

w0 + 2cn = +∞. Par consé-

quent, la suite u tend vers r0.

Exercice 2 :

On considère la suite u dé�nie par u0 ∈ R+ et ∀n ∈ N∗, un =
√

un−1 + n.

1. Montrer que la suite u est bien dé�nie et que ∀n ∈ N, un ≥
√
n.

Pour tout entier n, on pose H(n) : ”un est bien dé�ni et
√
n ≤ un”.

Initialisation : H(0) est vraie par hypothèse.

Hérédité : soit n ∈ N tel que H(n) soit vraie. On a un + n+ 1 ≥ 0 donc un+1

est bien dé�ni et
un+1 =

√
un + n+ 1 ≥

√
n+ 1

Ainsi, la suite u est bien dé�nie et

∀n ∈ N, un ≥
√
n

2. (a) Montrer que : ∀x ∈ R+,
√
x ≤ 1

2
(1 + x) .

La fonction g : x 7→ 1

2
(1 + x)−

√
x est dérivable sur R+∗ et

∀x ∈ R+∗, g′(x) =
1

2
− 1

2
√
x

La fonction g est donc décroissante sur [0, 1] et croissante sur [1,+∞[. Elle
admet donc un minimum global en 1 égal à g(1) = 0.

La fonction g est donc positive sur R+ i.e.

∀x ∈ R+,
√
x ≤ 1

2
(1 + x) .

(b) En déduire que ∀n ∈ N, un ≤ n+
u0

2n
puis que un = o(n2).

Pour tout entier n, on pose H(n) : ”un ≤ n+
u0

2n
”.

Initialisation : H(0) est vraie.

Hérédité : soit n ∈ N tel que H(n) soit vraie. On a

un+1 =
√
un + n+ 1 ≤ 1

2
(1 + un + n+ 1) ≤ 1

2

(
1 + n+

u0

2n
+ n+ 1

)
donc

un+1 ≤ n+ 1 +
u0

2n+1

Ainsi,

∀n ∈ N, un ≤ n+
u0

2n

En particulier, 0 ≤ un

n2
≤ 1

n
+

u0

n2n
. Le théorème d'encadrement implique

alors que :

un = o(n2)
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(c) Montrer que un = o(n) et en déduire un équivalent de un.

Soit n ∈ N∗, on a
un

n
=

√
un−1

n2
+

1

n
donc lim

n→+∞

un

n
= 0 i.e.

un = o(n)

Ainsi, n+ un−1 ∼ n donc

un ∼
√
n

(d) Soit v =
(
un −

√
n
)
n∈N. Prouver que la suite v converge et donner sa limite.

Soit n ∈ N∗, on a

un −
√
n =

√
n+ un−1 −

√
n =

√
n
(√

1 + un−1/n− 1
)

Comme lim
n→+∞

un−1

n
= 0, on a

√
1 +

un−1

n
− 1 ∼ un−1

2n
∼

√
n

2
. Ainsi,

lim
n→+∞

vn =
1

2
·

(e) Calculer lim
n→+∞

√
n−

√
n− 1 puis lim

n→+∞
un − un−1.

Soit n ∈ N∗, on a
√
n−

√
n− 1 =

√
n
(
1−

√
1− 1/n

)
∼

√
n

2n
. Donc

lim
n→+∞

√
n−

√
n− 1 = 0

Soit n ∈ N∗, on a

un−un−1 =
√
n+

1

2
+o(1)−

(√
n− 1 +

1

2
+ o(1)

)
=

√
n−

√
n− 1+o(1) = o(1)

i.e.
lim

n→+∞
un − un−1 = 0

(f) Montrer que un+1 − un est de même signe que 1+ un − un−1 et en déduire

que la suite u est monotone à partir d'un certain rang.

Soit n ∈ N, on a

un+1 − un =
√
un + n+ 1−

√
un−1 + n =

un + 1− un−1√
un + n+ 1 +

√
un−1 + n

donc un+1 − un est de même signe que 1 + un − un−1.

Comme lim
n→+∞

un − un−1 + 1 = 1, on en déduit qu'à partir d'un certain la

suite (un − un−1 + 1)n∈N est positive donc la suite u est monotone à partir
de ce rang.

Exercice 3 :

1. Prouver que, pour tout entier n non nul, l'équation
e−x2

x
=

1

n
admet sur R+∗

une unique solution que l'on notera xn.

On considère la fonction f : x 7→ e−x2

x
.

La fonction f est dé�nie et dérivable sur R+∗ et

∀x ∈ R+∗, f ′(x) =

(
−1

x2
− 2

)
e−x2

< 0

La fonction f est donc strictement décroissante sur l'intervalle R+∗. Elle réalise
donc une bijection de R+∗ dans f

(
R+∗).

Comme lim
0

f = +∞ et lim
+∞

f = 0, f réalise une bijection de R+∗ dans R+∗.

En particulier, pour tout entier n non nul, le réel strictement positif 1/n admet
un unique antécédent.

2. Montrer que lim
n→+∞

xn = +∞.

Par dé�nition, pour tout entier n, on a xn = f−1 (1/n).

Comme lim
+∞

f = 0, on a lim
+∞

f−1 = 0 donc

lim
n→+∞

xn = +∞

3. Montrer que, pour tout entier n non nul, on a :

x2
n + lnxn = lnn

et en déduire un équivalent de xn.

Pour tout entier n non nul, on a :

e−x2
n =

xn

n

donc −x2
n = ln(xn)− lnn i.e.

x2
n + lnxn = lnn

Comme lim
n→+∞

xn = +∞, on a, par croissances comparées, lim
n→+∞

ln(xn)

x2
n

= 0

i.e. lnxn = o(x2
n) donc x2

n ∼ x2
n + lnxn = lnn puis

xn ∼
√
lnn

3



4. Soit u =
(
xn −

√
lnn

)
n∈N

. Trouver un équivalent de u et sa limite.

Soit n ∈ N∗, on a :(
un +

√
lnn

)2

+ ln
(
un +

√
lnn

)
= lnn

soit
u2
n + 2un

√
lnn+ ln

(
un +

√
lnn

)
= 0.

Comme xn ∼
√
lnn, un = o

(√
lnn

)
puis u2

n = o
(
2un

√
lnn

)
. Ainsi,

u2
n + 2un

√
lnn ∼ 2un

√
lnn .

D'autre part,

ln
(
un +

√
lnn

)
=

1

2
ln(lnn) + ln

(
1 +

un√
lnn

)

Comme un = o
(√

lnn
)
, on a

un√
lnn

= o(1) puis ln

(
1 +

un√
lnn

)
= o(1) et, a

fortiori,ln

(
1 +

un√
lnn

)
= o(ln(lnn)). Par suite,

ln
(
un +

√
lnn

)
∼ 1

2
ln(lnn)

puis

un ∼ ln(lnn)

4
√
lnn

·

Par croissances comparées, lim
x→+∞

ln(x)

4
√
x

= 0 donc

lim
n→+∞

un = 0
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