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L’objectif de ce devoir est d’établir la formule de Stirling qui sera désormais considérée
comme faisant partie du cours :
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I : Etude d’une suite
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Pour tout entier n, on pose I, = / sin”™ (t)dt
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Calculer Iy et I4.

Pour tout entier n, montrer que
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Montrer que la suite (I,,)nen est décroissante. En déduire qu’elle converge

Prouver que pour tout entier n, on a Iy, =

Prouver que I, ~ I, 41

Montrer que pour tout entier n, (n + 1)I,I,+1 = g

Déterminer un équivalent de la suite (I,)nen.

II : Démonstration de la formule de Stirling
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2.

Enoncer la formule de Taylor-Young 4 I’ordre 3 en 0 de la fonction ¢ — In(1+t).
nn+1/267n
On considére la suite u = <1n <|)> .
n n>2

Déterminer un équivalent de ;41 — Up.

3. En déduire que la suite u est croissante & partir d’un certain rang.

4. Enoncer la formule de Taylor-Young 4 I’ordre 4 en 0 de la fonction ¢ — In(1+t).
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. On considére la suite v = (un + — + ) .
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Déterminer un équivalent de vy, 11 — vs,.

6. En déduire que v est décroissante & partir d’un certain rang.

7. En déduire ’existence d’une constante C strictement positive telle que :
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. A Tl'aide de la premiére partie, prouver que C' = /27



