ITC2

Le probleme du sac a dos

C. MULLAERT

Lycée Saint-Louis

Année 2025-2026

Le probléme du sac a dos

C. MULLAERT ITC2

On dispose de N objets, chacun ayant une masse m; entiére et une
valeur v; et un sac a dos pouvant contenir un poids maximal M.
On cherche

n

n
Pp.m = max Zx,-v,-, (X1, ...y xn) € {0,1}" tel que Zx,-m,- <M
i=1 i=1

c'est-a-dire la valeur maximale que I'on peut mettre dans un sac a
dos de capacité maximale M en utilisant les n premiers objets.

On peut également s'intéresser a une constitution optimale du sac
a dos, c'est-a-dire a un n-uplet (xi, ..., x,) € {0,1}" tel que

n n
Zx,-m,- < M et ZX,'V,' = Pn,M-
i=1 i=1

C. MULLAERT ITC2

Une approche par force brute, c'est-a-dire en testant toutes les
possibilités est a exclure car exponentielle en n.

Une approche gloutonne a été vue en premiere année, elle ne
permet pas toujours d'obtenir la solution optimale.

Pour cela, a chaque étape, on met dans le sac a dos I'objet ayant

le meilleur ratio valeur/poids ayant un poids inférieur a ce qu'il est
encore possible de mettre dans le sac a dos.

C. MULLAERT ITC2

def SacADos(Lval, Lpoids,Max):
n=len(Lval)
if min(Lpoids)>Max :
return(nx*[0])
#Recherche de 1'objet le plus rentable
#et de poids<=Maz
gmax=0
for k in range(n)
pk=Lpoids [k]
vk=Lval [k]
if pk<=Max and (vk/pk)>qmax:
i=k
gmax=vk/pk
pi=Lpoids[i]
Lpoids[i]=Max+1
#L'objet est mis a Maxz+1 pour ne plus Etre pris
L= SacADos(Lval, Lpoids,Max-pi)
L[i]=1
return(L)

C. MULLAERT ITC2

Pour gagner en complexité, on peut également trier les objets en
fonction de leur ratio valeur/poids en adaptant I'un des
algorithmes de tri : tri bulle, tri par insertion, tri par sélection, tri
fusion, tri rapide, tri par comptage.

C. MULLAERT ITC2

Le tri bulle consiste a parcourir la liste et a comparer les éléments
consécutifs et, lorsqu’ils ne sont pas dans le bon ordre, on les
échange. Aprés ce premier passage, le plus grand élément de la
liste est a la fin. On recommence le nombre de fois nécessaire.

def TriBulle(L)
n=len(L)
p=0 #numéro de passage
c=1 #nombre d'échanges de ce passage
while ¢c>0 :
c=0
for k in range(n-p-1):
if LIk]>L[k+1]
L[k],L[k+1] =L[k+1],L[k]
c+=1
p+=1
return(L)

C. MULLAERT ITC2

[l s'agit d'un tri par comparaison, en place, stable (grice a
I'inégalité stricte).

La complexité est quadratique dans le pire des cas et linéaire dans
le meilleur des cas grace au compteur.

Néanmoins, il est trés peu utilisé en pratique.

C. MULLAERT ITC2

Le tri par insertion consiste a déplacer le deuxieme élément de
sorte que les deux premiers éléments soient bien ordonnés puis a
recommencer. A chaque itération i suivante, on part d'une liste
dont les i premiers éléments sont bien triés, et I'on déplace le

(7 + 1)-eme élément pour l'insérer a sa place parmi tous ceux qui le
précedent.

C. MULLAERT ITC2

def Triinsert(L)
n=len(L)
for i in range(l,n):
val=L[i]
On cherche la place de L[%]
et on décale les valeurs précédentes trop grande
j=i-1
while j>=0 and L[jl>val :
L[j+1]1=L[j]
3=3-1
L[j+1]=val

Il s'agit d'un tri par comparaison, en place, stable, quadratique
dans le pire des cas, linéaire dans le meilleur des cas.

Cette fonction ne renvoie rien elle agit par effet de bord.

C. MULLAERT ITC2

Voici une version récursive :

def TriinsertRec(L):

n=len(L)

if n<= 1:
return (L)

val=L[-1]

M=TriinsertRec(L[:-1])+[val]

j =n-2

while j >= 0 and M[j] > val:
M[j+1] = M[j]

j=31
M[j+1] = val
return(M)

Le tri est toujours stable mais il a I'inconvénient de ne pas €étre en
place car on recopie des listes. Il est de complexité quadratique.

C. MULLAERT ITC2

Voici une version récursive en place :

def TriinsertRec2(L)
def insertionRec(k,x)
insére l'élément = dans la liste L[0:k]
supposée triée
if k>0 and x< L[k-1]
L[k]=L[k-1]
insertionRec(k-1,x)
else
L[k]=x

def TriJusque(j)
if §>1
TriJusque(j-1)
insertionRec(j-1,L[j-11)

TriJusque(len(L))

C. MULLAERT ITC2

On peut améliorer la complexité en recherchant I'indice ol insérer
le nouvel élément a de facon dichotomique. Pour que le tri soit
stable on cherche, lorsqu'on insere a dans L[0 : k], un indice

d € [1,k — 1], s'il existe, tel que L[d — 1] <= a < L[d].

def Dicho(k,a,L)

if a<L[0]
return O
if a>=L[k-1]
return k
g=0
d=k
while d-g>1 : #invariants : g<=d et L[g]<=a<L[d]
m=(g+d)//2
if L[m]<=a :
g=m
else
d=m
return d

C. MULLAERT ITC2

def TrilnsertDicho(L):
for k in range(l,len(L)):
a=L[k]
ind=Dicho(k,a,L)
for j in range(k,ind,-1)
L[j1,L0j-11=L[j-11,L[j]

Le nombre de comparaisons est alors semi-linéaire c'est-a-dire
en O(nlnn), le nombre d'échanges reste quadratique dans le pire
des cas.

C. MULLAERT ITC2

Le tri par sélection consiste a placer le plus petit élément de la liste
en premiére position, le plus petit des autres éléments en seconde
position, et ainsi de suite.

def Triselection(L):
n=len(L)
for k in range(n-1)
On trouve le plus petit parmi les n-k derniers éléments
m=L [k]
imin=k
for j in range(k+1l,n):
if L[jl<m :
m=L[j]
imin=j
L{k],L[imin]=L[imin],L[k]

C. MULLAERT ITC2

On retiendra qu'il s'agit d'un tri avec un nombre de comparaisons
quadratique mais un nombre d'échanges linéaire, ce qui pourrait
étre utile si I'on compare autres chose que des entiers et si la
comparaison est moins coliteuse que I'échange.

La version itérative précédente est en place et stable.

Une version récursive naive nécessite le recopiage de listes

C. MULLAERT ITC2

def TriselectionRec(L):
n=len(L)
if n<=1
return(L)
imin=0
vmin=L[0]
for k in range (1,n)
if L[k]<vmin :
imin=k
vmin=L [k]
L2=TriselectionRec([L[k] for k in range(n) if k!=imin]
return ([L[imin]]+L2)

mais on peut écrire une version récursive en place :

C. MULLAERT ITC2

def TriselectionRec2(L):
n=len(L)
def aux(j)
#place en position j le plus petit des éléments de L[j:]
imin=j
vmin=L[j]
for k in range (j+1,n)
if L[k]<vmin :
imin=k
vmin=L [k]
L[j],L0imin]=L[imin],L[j]
def TriJusque(j)
if j==
aux(0)
else :
TriJusque(j-1)
aux(j)
TriJusque(n-1)

C. MULLAERT ITC2

Le tri fusion repose sur les deux idées suivantes

@ si on dispose de deux listes déja triées, il est facile de les
fusionner en une seule liste triée, en sélectionnant
successivement le premier élément de |'une ou de I'autre,
selon celui qui est le plus petit ;

@ une liste de longueur 0 ou 1 est déja triée.

Il s'agit d'un algorithme naturellement récursif qui fonctionne en
coupant la liste a trier en deux parties a peu pres égales, qu'on
coupe a leur tour en deux et ainsi de suite. Au bout d'un certain
nombre d'appels récursifs, toutes les listes résultantes sont de
longueur 0 ou 1, donc triées : il ne reste qu'a les fusionner en
remontant la pile des appels.

C. MULLAERT ITC2

def Fusion(L1,L2):
L=0]
ni=len(L1)
n2=1len(L2)
i=0
j=0
while i<nl and j<n2 :
if L1[i]<= L2[j]
L+=[L1[i]]
i=i+1
else :
L+=[L2[j]]
j=3+1
if i<len(L1)
return(L+L1[i:])
return(L+L2[j:]1)

C. MULLAERT ITC2

def TriFusionRec(L)

n=len(L)
if n<=1
return(L)

L1=TriFusionRec(L[:n//2])
L2=TriFusionRec(L[n//2:])
return FusionRec(L1,L2)

On retiendra qu'il s’agit d'un tri qui n'est pas en place et dont la
complexité est en nlog n ou n représente la longueur de la liste a
trier.

Le nombre de comparaisons ne peut pas étre amélioré pour un
algorithme par comparaisons

C. MULLAERT ITC2

Le tri par pivot repose sur |'idée suivante : on fixe un des éléments
a de la liste a trier (par exemple son premier élément pour avoir la
stabilité), qui est le " pivot”.

On partitionne ensuite les autres éléments de la liste en deux listes,
celle des éléments strictement inférieurs a a et les autres. On

réitere ce procédé sur ces deux liste.

Il s'agit donc, comme le tri par fusion, d'un algorithme
naturellement récursif.

C. MULLAERT ITC2

def Partitionne(L):
Lg=[]
Ld=[]
p=L[0]
for k in range(l,len(L)):
if Llkl<p :
Lg+=[L[k]]
else :
Ld+=[L[k]]
return(Lg,Ld)

def TriRapide(L)
if len(L)<=1:
return(L)
Lg,Ld=Partitionne(L)
return(TriRapide(Lg)+[L[0]]+TriRapide(Ld))

C. MULLAERT ITC2

On retiendra que le tri rapide est statistiquement, de loin, le tri le
plus rapide en moyenne (d'ou son surnom), il est en nlogn ot n
représente la longueur de la liste a trier, ce qui est optimal pour un
tri par comparaisons.

Néanmoins pour une liste triée, il est de complexité quadratique.

C. MULLAERT ITC2

Enfin le tri par comptage ou dénombrement est utile lorsque les
valeurs de la liste sont par exemple des entiers entre 0 et M.

def TriComptage(L, M):
occ = [0] * (M+1)
for i in L:
occli] += 1
s =0
for i in range(M+1):
for j in range(occ[il):
Lls] =i
s +=1

Si M = O(len(L)), on a un algorithme de complexité linéaire.

C. MULLAERT ITC2

Ce probléme possede une sous-structure optimale car I'on a la
relation de récurrence :

p Pk—l,m Simg>m
k,m = :
o max (Pk—1,m, Vk + Pk—1,m—m,) sinon

On va donc procéder en utilisant la programmation dynamique.

C. MULLAERT ITC2

La mémoisation consiste a modifier la version récursive naive
suivante :

def sacadosR(Lm,Lv,M):
#Lm est la liste des masses, Lv celle des valeurs
#et M la masse maxzimale
def aux(k,m)
#renvote la wvaleur maxzimale pour un sac de contenance
#maximale m et k objets
if k==0:
return O
mk=Lm [k-1]
vk=Lv [k-1]
if mk>m :
return aux(k-1,m)
return max(aux(k-1,m), aux(k-1,m-mk)+vk)
return aux(len(Lm) ,M)

C. MULLAERT ITC2

en stockant les valeurs déja calculées :

def sacadosM(Lm,Lv,M):
a={}
def aux(k,m)
if (k,m) in d :
return d[(k,m)]
if k==0 :
dl[(k,m)]1=0
return O
mk=Lm [k-1]
vk=Lv [k-1]
if mk>m :
p=aux(k-1,m)
else :
p= max(aux(k-1,m), aux(k-1,m-mk)+vk)
dl(x,m)]=p
return p
return aux(len(Lm),M)

C. MULLAERT ITC2

On peut également remplir une liste de listes de bas en haut
def sacados_Asc(Lm,Lv,M):
n=len(Lm)
T=[(M+1)*[0] for i in range(n+1)]
for k in range(l,n+1):
for m in range(0,M+1):
mk=Lm [k-1]
vk=Lv [k-1]
if mk>m :
T[k] [m]=T[k-1] [m]
else :
T[k] [m]=max(T[k-1] [m],T[k-1] [m-mk]+vk)
return T[n] [M]

C. MULLAERT ITC2

Déterminons une composition optimale du sac a dos
def sacados_dico(Lm,Lv,M):
a={}
def aux(k,m)
if (k,m) in d :
return d[(k,m)]
if k==0:
d[(k,m)]=0
return O
mk=Lm [k-1]
vk=Lv [k-1]
if mk>m :
p=aux (k-1,m)
else
p= max(aux(k-1,m), aux(k-1,m-mk)+vk)
dl(x,m)]=p
return p
aux(len(Lm) ,M) #on remplit le dictionnaire
return d

C. MULLAERT ITC2

def sacados_composition_dico(Lm,Lv,M):
d=sacados_dico(Lm,Lv,M)
Sac=[]
M2=M
for k in range(len(Lm),0,-1):
if dl(k,M2)]1>d[(k-1,M2)]:
Sac=[1]+Sac
M2-=Lm[k-1]
else :
Sac=[0]+Sac
return Sac

C. MULLAERT ITC2

L'ajout d'un élément en début de liste n'est pas adapté a cette
structure. On peut utiliser le type deque.

def sacados_composition_dico(Lm,Lv,M):
d=sacados_dico(Lm,Lv,M)
Sac=deque ()
M2=M
for k in range(len(Lm),0,-1):
if dl(k,M2)]1>d[(k-1,M2)]:
Sac.appendleft (1)
M2-=Lm[k-1]
else
Sac.appendleft(0)
return list(Sac)

C. MULLAERT ITC2

ou plus simplement :

def sacados_composition_dico(Lm,Lv,M):
d=sacados_dico(Lm,Lv,M)
n=len(Lm)
Sac=[0]*n
M2=M
for k in range(n,0,-1):
if dl(k,M2)]1>d[(k-1,M2)]:
Sac[k-1]=1
M2-=Lm[k-1]
else
Sac[k-1]=0
return Sac

On peut également éviter de refaire des comparaisons en stockant
I'alternative choisie

C. MULLAERT ITC2

def sacados_dico2(Lm,Lv,M):
d,r={},{3
def aux(k,m)
if (k,m) in d :
return d[(k,m)]

if k==0:
dl(x,m)]=0
return O
mk,v_k = Lm[k-1],Lv[k-1]
if mk>m :
p=aux(k-1,m)
else :
pl,p2 = aux(k-1,m),aux(k-1,m-mk)+vk
if pil<=p2:
rl(k,m)],p = 1,p2
else
p=pl
dl(k,m)]=p
return p
aux(len(Lm) ,M) #on remplit le dictionnaire
return r

C. MULLAERT ITC2

def sacados_composition_dico2(Lm,Lv,M):
d=sacados_dico2(Lm,Lv,M)
n=len(Lm)
Sac=[0]*n
M2=M
for k in range(n,0,-1):
if (k,M2) in r:
Sac[k-1]=1
M2-=Lm[k-1]
else
Sac[k-1]=0
return Sac

C. MULLAERT ITC2

On peut de méme adapter la version ascendante.
Il est surtout intéressant de stocker |'alternative lorsque la

retrouver nécessite un nombre de comparaison qui augmente avec
la taille du probleme.

C. MULLAERT ITC2

def sacados_composition_Asc(Lm,Lv,M):
n=len(Lm)
T=[(M+1)*[0] for i in range(n+1)]
for k in range(l,n+1):
for m in range(0,M+1):
mk=Lm [k-1]
vk=Lv [k-1]
if mk>m :
T[k] [m]=T[k-1] [m]
else :
T[k] [m]=max (T[k-1] [m],T[k-1] [m-mk]+vk)
Sac,M2=[0]*n,M
for k in range(n,0,-1):
if T[k] [M2]>T[k-1] [M2]:
Sac[k-1]=1
M2-=Lm[k-1]
return Sac

C. MULLAERT ITC2

	Le problème du sac à dos
	Algorithme glouton
	Rappels sur les algorithmes de tris

