
Rudiments de logique

I. Assertions

Dé�nition. On appelle proposition ou assertion un énoncé qui ne peut être que vrai ou faux.

Par exemple, "l'entier n est pair" ou "2 + 2 = 4" sont des propositions.

Remarque. Une assertion peut dépendre de certaines variables par exemple "f(0) = 1"
Par contre la proposition "Tout entier n est pair" ne dépend pas de n. On dit que n est une

variable muette. On peut la renommer.

Remarque. Deux propositions qui sont simultanément vraies ou fausses sont dites équivalentes.

1. Négation/ Conjonction/Disjonction

Á partir de propositions, on peut en construire de nouvelles.

Dé�nition. Soit P une proposition. On appelle négation de P et on note "non P" ou "P" la

proposition qui est vraie si, et seulement si, P est fausse. Sa table de vérité est donnée par :

P non P

vraie fausse

fausse vraie

Proposition. Soit P une proposition. Les propositions P et P sont équivalentes.

Proposition. Soient P et Q deux propositions. Les propositions P et Q sont équivalentes si, et

seulement si, les propositions P et Q le sont.

Dé�nition. Soient P et Q deux propositions. On appelle conjonction des propositions P et Q
et l'on note "P et Q" ou P ∧Q la proposition qui est vraie si, et seulement si, les propositions

P et Q sont vraies. Sa table de vérité est donnée par :

P Q P ∧Q

fausse fausse fausse

fausse vraie fausse

vraie fausse fausse

vraie vraie vraie

Dé�nition. Soient P et Q deux propositions. On appelle disjonction des propositions P et Q et

l'on note "P ou Q" ou P ∨Q la proposition qui est fausse si, et seulement si, les propositions P
et Q sont fausses. Sa table de vérité est donnée par :

P Q P ∨Q

fausse fausse fausse

fausse vraie vraie

vraie fausse vraie

vraie vraie vraie

1



2

Proposition. Soient P et Q deux propositions.

� Les propositions P ∧Q et P ∨Q sont équivalentes.

� Les propositions P ∨Q et P ∧Q sont équivalentes.

Proposition. Soient P , Q et R trois propositions.

� Les propositions (P ∧Q) ∧R et P ∧ (Q ∧R) sont équivalentes.
� Les propositions (P ∨Q) ∨R et P ∨ (Q ∨R) sont équivalentes.

On dit que les lois ∧ et ∨ sont associatives. On pourra donc noter P ∧Q ∧R et P ∨Q ∨R

Proposition. Soient P , Q et R trois propositions.

� Les propositions P ∧ (Q ∨R) et (P ∧Q) ∨ (P ∧R) sont équivalentes.
� Les propositions P ∨ (Q ∧R) et (P ∨Q) ∧ (P ∨R) sont équivalentes.

On dit que la loi ∧ est distributive par rapport à la loi ∨ et que la loi ∨ est distributive par rapport

à la loi ∧.

2. Implication/ Équivalence/ Réciproque

Dé�nition. Soient P et Q deux propositions. On appelle implication de Q par P et on note

"P ⇒ Q", l'assertion P ∨Q ; elle est donc fausse si, et seulement si, P est vraie et Q fausse.

Sa table de vérité est donnée par :

P Q P ⇒ Q

fausse fausse vraie

fausse vraie vraie

vraie fausse fausse

vraie vraie vraie

Lorsque l'assertion "P ⇒ Q" est vraie, on dit que la proposition P implique la proposition Q.

Remarque. La proposition ”1 = 2” ⇒ ”6 = 8” est donc vraie...

Remarque. Une implication n'est jamais qu'une disjonction (OU) sa négation est donc une

conjonction (ET).

La négation de P ⇒ Q est P ∧Q.

Remarque. Pour montrer que la proposition "P ⇒ Q" est vraie, on peut commencer par "Sup-

posons P vraie et montrons que Q l'est aussi".

Cela repose sur le fait que si P est fausse, alors P ⇒ Q est vraie.

Remarque. Pour montrer que la proposition "P ⇒ Q" est vraie, on peut également montrer

que sa négation P ∧ Q est fausse en montrant qu'elle implique une absurdité. On dit que l'on

raisonne par l'absurde.

Cela repose sur l'équivalence entre les propositions P et P ⇒ Faux sont équivalentes.

Remarque. Pour montrer ”P ouQ”, on peut montrer la proposition équivalente P ⇒ Q.

Exercice. Soient P et Q deux propositions.

Montrer que les propositions P ⇒ Q et Q ⇒ P sont équivalentes.

Dé�nition. Soient P et Q deux propositions.

La proposition Q ⇒ P est appelée la contraposée de la proposition P ⇒ Q.

Remarque. Pour montrer que l'implication P ⇒ Q est vraie, il su�t de montrer que sa contra-

posée est vraie. La rédaction sera alors : "Supposons que Q soit fausse et montrons que P l'est

aussi".

On dit que l'on raisonne par contraposée
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Remarque. L'implication P ⇒ Q s'écrit indi�éremment

� si P , alors Q
� si Q, alors P
� pour que Q, il su�t que P
� pour que P , il faut que Q
� P est une condition su�sante pour que Q
� Q est une condition nécessaire pour que P .

Dé�nition. Soient P et Q deux propositions. On appelle équivalence entre P et Q et on note

"P ⇔ Q", l'assertion qui est vraie si P et Q sont simultanément vraies ou fausses, c'est-à-dire

si elles sont équivalentes. Sa table de vérité est donnée par :

P Q P ⇔ Q

fausse fausse vraie

fausse vraie fausse

vraie fausse fausse

vraie vraie vraie

Remarque. L'équivalence P ⇔ Q s'écrit indi�éremment

� P si et seulement si Q
� Pour que Q, il faut et il su�t que P
� P est une condition nécessaire et su�sante pour que Q

Exercice. Montrer que les propositions P ⇔ Q et "P ⇒ Q et Q ⇒ P" sont équivalentes.

Remarque. Pour montrer que les propositions P et Q sont équivalentes, on peut raisonner par

double implication en montrant P ⇒ Q et Q ⇒ P .

La rédaction sera alors : "Raisonnons par double implication.

� Montrons que P ⇒ Q ...

� Montrons que Q ⇒ P

Dé�nition. Soient P et Q deux propositions.

La proposition Q ⇒ P est appelée la réciproque de la proposition P ⇒ Q.

Remarque. Attention, si la proposition P ⇒ Q est équivalente à sa contraposée Q ⇒ P , elle

n'est pas équivalente à sa réciproque.

Exercice. Montrer qu'une assertion et sa réciproque ne sont pas liées

3. Exemples de raisonnements

Exercice. Soient P , Q et R trois propositions. Montrer que :

(P ∧ (P ⇒ Q)) ⇒ Q

((P ∨Q) ∧ (P ⇒ R) ∧ (Q ⇒ R)) ⇒ R (Raisonnement par disjonction des cas)(
(P ⇒ Q) ∧ (P ⇒ Q)

)
⇒ P (Raisonnement par l'absurde)

Remarque. Pour montrer qu'une proposition R est vraie on peut exhiber deux propositions P
et Q telles que les propositions P ∨Q, P ⇒ R et Q ⇒ R soient vraies. On dit que l'on raisonne

par disjonction des cas

Exercice. (*) Montrer qu'un entier est pair si, et seulement si, son carré l'est.

Remarque. Pour montrer qu'une proposition P est vraie on peut exhiber une proposition Q telle

que les propositions P ⇒ Q et P ⇒ Q soient vraies, c'est-à-dire que l'on suppose P et que l'on

aboutit à une contradiction. On dit que l'on raisonne par l'absurde

Exercice. (*) Montrer que la somme d'un rationnel et d'un irrationnel est un irrationnel.

Exercice. (*) Montrer que
√
2 est un irrationnel.
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II. Quanti�cateurs

1. Quanti�cateur universel et existentiel

Dé�nition. Soit P (x) une proposition dont la véracité dépend d'un paramètre x ∈ E.

� On note ”∀x ∈ E, P (x)” la proposition qui est vraie si, pour tout élément x de E,

P (x) est vraie.
� On note ”∃x ∈ E : P (x)” la proposition qui est vraie s'il existe un élément x appartenant

à E tel que P (x) soit vraie.
� On note ”∃!x ∈ E : P (x)” la proposition qui est vraie s'il existe un unique élément x

appartenant à E tel que P (x) soit vraie.

Exemple. La proposition (∃x ∈ R : x ≥ 3 ⇒ x ≥ 4) est vraie (prendre par exemple x = 5) alors
que les propositions (∃!x ∈ R : x ≥ 3 ⇒ x ≥ 4) et (∀x ∈ R : x ≥ 3 ⇒ x ≥ 4) sont fausses.

Proposition. Soit P (x) une proposition qui dépend d'une variable x ∈ E et soit a ∈ E. On a

(∀x ∈ E,P (x)) ⇒ P (a) ⇒ (∃x ∈ E : P (x))

2. Négation de quanti�cateurs

Proposition. Si P (x) est une proposition qui dépend d'une variable x ∈ E, alors on a

∀x ∈ E,P (x) ⇔ (∃x ∈ E : P (x))

∃x ∈ E : P (x) ⇔ (∀x ∈ E,P (x))

Remarque. La négation d'une proposition sous la dépendance du quanti�cateur ∃! est plus com-

plexe à rédiger car elle fait intervenir deux éventualités : ou bien il n'existe pas de variable qui

convient, ou bien il en existe au moins deux.

Remarque. Par convention, si l'ensemble E est vide, alors les propositions ”∃x ∈ E : P (x)” et

”∃!x ∈ E : P (x)” sont fausses tandis que la proposition ”∀x ∈ E,P (x)” est vraie.

3. Rédaction

Quanti�cateur universel :

Pour montrer la proposition ”∀x ∈ E,P (x)”, une rédaction est :
"Soit x ∈ E. Montrons que P (x) est vraie"
Si E ⊂ N, on peut procéder par récurrence (cf �n de chapitre)

Quanti�cateur existentiel :

Pour montrer la proposition ”∃x ∈ E : P (x)”. On peut exhiber un élément x ∈ E tel que P (x)
soit vraie.
La rédaction est alors "L'élément x = ... appartient à E et véri�e P (x). En e�et, ..."

S'il n'est pas évident à trouver, on peut commencer par une phase d'analyse. L'idée est de
supposer qu'un tel élément x existe, d'en déduire certaines de ces propriétés pour déterminer
un élément qui convient. Cette phase d'analyse peut rester au brouillon. On se contente alors
d'exhiber un élément trouvé et de véri�er que P (x) est vraie.

Si cette phase d'analyse conduit à un unique élément, on aura montré l'unicité sous réserve
d'existence. Il n'y aura plus qu'à véri�er que l'élément en question convient. C'est le principe du
raisonnement par analyse synthèse.
Lorsque l'on veut montrer l'existence et l'unicité de cette manière, l'analyse doit être rédigée.
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Analyse-synthèse

Pour montrer la proposition ”∃!x ∈ E : P (x)”. On peut procéder par analyse-synthèse.
Analyse : On suppose qu'un tel élément x existe. On en déduit l'expression de x.
Synthèse : On véri�e que l'élément x trouvé appartient à E et que P (x) est vraie.
La rédaction est la suivante :
" Analyse : Soit x ∈ E tel que P (x) soit vraie, on a alors .... donc ... puis ... d'où x = (∗). On a
donc montré l'unicité de x sous réserve d'existence.
Synthèse : L'élément x = (∗) appartient à E et véri�e P (x). En e�et, ... "

Si l'on doit prouver ”∃!x ∈ E : P (x)” et que l'on est capable d'exhiber facilement un élément
x0 ∈ E tel que P (x0) soit vrai. Il ne reste plus qu'à prouver l'unicité.
Pour cela, on considère x ∈ E tel que P (x) et l'on prouve que x = x0.

Remarque. On peut adapter ce raisonnement par analyse-synthèse pour déterminer l'ensemble

des éléments véri�ant une certaine propriété.

Exercice. (*) Soient a, b, c et d quatre réels tels que a ̸= b.

Montrer qu'il existe une unique fonction a�ne f telle que f(a) = c et f(b) = d.

Exercice. (*) Soit f ∈ RR, I = {f ∈ RR impaire} et P = {f ∈ RR paire}. Montrer que :

∀f ∈ RR, ∃!(f1, f2) ∈ I × P : f = f1 + f2

Exercice. (*) Déterminer les fonctions f ∈ RR telles que :

∀(x, y) ∈ R2, f(y − f(x)) = 2− x− y.

4. Action des quanti�cateurs sur une conjonction ou une disjonction

Proposition. Soient P (x) et Q(x), deux propositions dépendant d'une variable x ∈ E, alors on

a les équivalences suivantes :

(∀x ∈ E,P (x) ∧Q(x)) ⇔ (∀x ∈ E,P (x)) ∧ (∀x ∈ E,Q(x))

(∃x ∈ E : P (x) ∨Q(x)) ⇔ (∃x ∈ E : P (x)) ∨ (∃x ∈ E : Q(x))

Proposition. Soient P (x) et Q(x), deux propositions dépendant d'une variable x ∈ E, alors on

a les implications suivantes :

(∀x ∈ E,P (x)) ∨ (∀x ∈ E,Q(x)) ⇒ (∀x ∈ E,P (x) ∨Q(x))

(∃x ∈ E : P (x) ∧Q(x)) ⇒ (∃x ∈ E : P (x)) ∧ (∃x ∈ E : Q(x))

mais leurs réciproques ne sont pas forcément vraies.

5. Inversion de quanti�cateurs

Proposition. Soient E et F deux ensembles et P (x, y) une proposition dont la véracité dépend

de deux variables x ∈ E et y ∈ F . On a alors les équivalences suivantes :

(∀x ∈ E,∀y ∈ F, P (x, y)) ⇔ (∀y ∈ F,∀x ∈ E,P (x, y))

(∃x ∈ E : ∃y ∈ F : P (x, y)) ⇔ (∃y ∈ F : ∃x ∈ E : P (x, y))
(1)

On dit que deux quanti�cateurs ∀ successifs commutent. Il en est de même de deux quanti�ca-

teurs ∃ successifs.
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Proposition.

La proposition ∀x ∈ E,∀y ∈ F, P (x, y) est équivalente à ∀(x, y) ∈ E × F, P (x, y).
La proposition ∃x ∈ E : ∃y ∈ F : P (x, y) est équivalente à ∃(x, y) ∈ E × F, P (x, y).

Remarque. L'équivalence (∃!x ∈ E : ∃!y ∈ F : P (x, y)) ⇔ (∃!y ∈ F : ∃!x ∈ E : P (x, y)) n'est

pas forcément vraie. La proposition ∃!x ∈ E : ∃!y ∈ F : P (x, y) n'est pas non plus forcément

équivalente à

∃!(x, y) ∈ E × F, P (x, y).

Remarque. En général, on a pas le droit d'intervertir deux quanti�cateurs di�érents. Plus pré-

cisément, les implications suivantes sont vraies mais leurs réciproques ne le sont pas forcément.

(∃x ∈ E : ∀y ∈ F : P (x, y)) ⇒ (∀y ∈ E : ∃x ∈ E : P (x, y))

(∃!x ∈ E : ∀y ∈ F : P (x, y)) ⇒ (∀y ∈ F : ∃x ∈ E : P (x, y))

(∃!x ∈ F : ∃y ∈ F : P (x, y)) ⇒ (∃y ∈ E : ∃!x ∈ E : P (x, y))

III. Raisonnements par récurrence

Dans cette partie, on considère une proposition P (n) qui dépend d'une variable n qui est un
entier positif. Le raisonnement par récurrence permet de montrer la proposition ∀n ∈ N, P (n).
Pour cela, on peut montrer :

� P (0) et ∀n ∈ N, P (n) ⇒ P (n+ 1) (Récurrence simple)
� P (0), P (1) et ∀n ∈ N, (P (n) ∧ P (n+ 1)) ⇒ P (n+ 2) (Récurrence double)
� P (0) et ∀n ∈ N : (∀k ≤ n : P (k)) ⇒ P (n+ 1) (Récurrence forte).

La rédaction d'une récurrence simple est la suivante :
� Pour tout entier n, on note P (n) : ” · · · ”.
� Initialisation : la proposition P (0) est vraie. En e�et, ...
� Hérédité : Soit n ∈ N tel que la proposition P (n) soit vraie. Montrons que la proposition

P (n+ 1) l'est aussi.

La rédaction d'une récurrence double est la suivante :
� Pour tout entier n, on note P (n) : ” · · · ”.
� Initialisation : les propositions P (0) et P (1) sont vraies. En e�et, ...
� Hérédité : Soit n ∈ N tel que les propositions P (n) et P (n + 1) soient vraies. Montrons

que la proposition P (n+ 2) l'est aussi.

La rédaction d'une récurrence forte est la suivante :
� Pour tout entier n, on note P (n) : ” · · · ”.
� Initialisation : la proposition P (0) est vraie. En e�et, ...
� Hérédité : Soit n ∈ N tel que les propositions P (0),...P (n) soient vraies. Montrons que la

proposition P (n+ 1) l'est aussi.

Remarque. Il arrive que l'on ait à faire une récurrence à partir d'un certain rang, on que l'on

souhaite démontrer une récurrence sur un ensemble Jn1, n2K. Dans ce cas, il faut adapter.

Si l'on veut montrer, par récurrence simple la proposition ∀n ≥ n0, P (n)”, on prouve P (n0)
et ∀n ≥ n0 : P (n) ⇒ P (n+ 1) ; ce qui se rédige :

� Pour tout entier n ≥ n0, on note P (n) : ” · · · ”.
� Initialisation : la proposition P (n0) est vraie. En e�et, ...
� Hérédité : Soit n ≥ n0 tel que la proposition P (n) soit vraie. Montrons que la proposition

P (n+ 1) l'est aussi.
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Si l'on veut montrer, par récurrence simple la proposition ∀n ∈ Jn1, n2K, P (n)”, on prouve P (n1)
et ∀n ∈ Jn1, n2 − 1K : P (n) ⇒ P (n+ 1) ; ce qui se rédige :

� Pour tout entier n ∈ Jn1, n2K, on note P (n) : ” · · · ”.
� Initialisation : la proposition P (n1) est vraie. En e�et, ...
� Hérédité : Soit n ∈ Jn1, n2 − 1K tel que la proposition P (n) soit vraie. Montrons que la

proposition P (n+ 1) l'est aussi.

Remarque. On peut bien sûr faire une récurrence �nie double ou forte.

Si l'on veut montrer, la proposition ”∀n ∈ Jn1, n2K, P (n)”, on peut aussi procéder par récurrence
descendante : on prouve P (n2) et ∀n ∈ Jn1 + 1, n2K : P (n) ⇒ P (n− 1) ; ce qui se rédige :

� Pour tout entier n ∈ Jn1, n2K, on note P (n) : ” · · · ”.
� Initialisation : la proposition P (n2) est vraie. En e�et, ...
� Hérédité : Soit n ∈ Jn1 + 1, n2K tel que la proposition P (n) soit vraie. Montrons que la

proposition P (n− 1) l'est aussi.

Remarque. On peut bien sûr faire une récurrence descendante double ou forte.

Exercice. Soit u une suite véri�ant ∀n ∈ N, un+2 = un+1 + 2un.
Montrer qu'il existe un unique couple (A,B) de réels tel que ∀n ∈ N, un = A(−1)n +B2n.

Exercice. Soit u une suite d'entiers strictement croissante. Montrer que ∀n ∈ N, un ≥ n.

Exercice. Montrer que ∀n ∈ N∗, ∃!(p, k) ∈ N2 : n = 2p(2k + 1).

Exercice. Soit u une suite d'entiers telle que

∀(n, p) ∈ N2, n ̸= p ⇒ un ̸= up et ∀n ∈ N, un ≤ n.

Montrer que ∀n ∈ N, un = n.

Exercice. Soit N ∈ N et n0,n1,...,nN des entiers distincts entre 0 et N .

1. On suppose que pour tout k ∈ J0, NK, nk ≤ k. Montrer que ∀k ∈ J0, NK, nk = k.

2. On suppose que pour tout k ∈ J0, NK, nk ≥ k. Montrer que ∀k ∈ J0, NK, nk = k.


