
Nombres complexes et trigonométrie

I. Nombres complexes

Dé�nition. On dé�nit l'ensemble C des nombres complexes comme l'ensemble des éléments
de R2, muni de l'addition usuelle sur R2 i.e.

∀(a, b, c, d) ∈ R4, (a, b) + (c, d) = (a+ b, c+ d)

L'élément (0, 1) est noté i, l'élément (a, b) est noté a+ ib.

Si l'on considère un nombre complexe z = a + ib, (a, b) ∈ R2, on dit que a est la partie réelle
de z et b la partie imaginaire de z. On note

a = Re(z) et b = Im(z)

En se �xant un repère orthonormé direct
(
O,

−→
i ,

−→
j
)
, on identi�e C et le plan usuel.

À un pointM (respectivement à un vecteur u⃗) de coordonnées (x, y) dans le repère, c'est-à-dire tel

que
−−→
OM = x

−→
i +y

−→
j (respectivement −→u = x

−→
i +y

−→
j ), on associe le nombre complexe z = x+iy.

On dit alors que z est l'a�xe de M (respectivement l'a�xe du vecteur −→u ) et que M est l'image
du nombre complexe z. On note alors M(z).

Dé�nition. Un nombre complexe dont la partie imaginaire est nulle est dit imaginaire pur.
L'ensemble des imaginaires purs est noté iR car il est constitué des éléments de la forme ib, b ∈ R.

Dé�nition. On dé�nit sur C une multiplication × par

∀(a, b, c, d) ∈ R4, (a+ ib)× (c+ id) = (ac− bd) + i(ad+ bc)

En particulier, on retrouve que i2 = −1.
Muni des lois usuelles + et ×, l'ensemble C a une structure de corps commutatif, notion détaillée
plus tard et qui peut être ignorée lors d'une première lecture.

Proposition. Soit (z, z′) ∈ C2, on a

Re(z + z′) = Re(z) + Ré(z′) et Im(z + z′) = Im(z) + Im(z′)

Re(zz′) = Re(z)Re(z′)− Im(z)Im(z′) et Im(zz′) = Re(z)Im(z′) + Im(z)Re(z′)

Dé�nition. Soit z = a+ ib un nombre complexe, on note z̄ le nombre complexe conjugué de z,
dé�ni par

z = a− ib

Dans le plan complexe, la conjugaison associe à un point d'a�xe z le point d'a�xe z qui est
obtenu par symétrie par rapport à l'axe des réels.
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Proposition. Pour tout nombre complexe z, on a

Re(z) =
z + z

2
et Im(z) =

z − z

2i

Par conséquent,

z ∈ R ⇔ Im(z) = 0 ⇔ z = z et z ∈ iR ⇔ Re(z) = 0 ⇔ z = −z

Un nombre complexe est réel si et seulement si le point d'a�xe z appartient à la droite (O, i⃗)
(aussi appelée droite réelle). Un nombre complexe est imaginaire pur si et seulement si le point
d'a�xe z appartient à la droite (O, j⃗).

Proposition. L'opération de conjugaison d'un nombre complexe possède les propriétés suivantes,
pour tout (z, z′) ∈ C2 :

(Involutivité) z = z

(Compatibilité avec l'addition) z + z′ = z + z′

(Compatibilité avec la multiplication) zz′ = zz′

(Compatibilité avec l'inversion)

(
1

z

)
=

1

z
si z ̸= 0

II. Module d'un nombre complexe

Soit z = a + ib ∈ C. Le nombre zz = a2 + b2 est un réel positif, ce qui justi�e la dé�nition
suivante.

Dé�nition. Soit z = a+ ib un nombre complexe. On note |z| le réel positif appelé module de z
dé�ni par

|z| =
√
zz =

√
a2 + b2

Remarque. La notation du module d'un nombre complexe coïncide avec la valeur absolue d'un
nombre réel : si z est réel, alors son module n'est autre que sa valeur absolue. Il n'y a donc pas
de con�it dans les notation, le module étend la valeur absolue des nombres réels à l'ensemble des
nombres complexes.

Proposition. Pour tout nombre complexe non nul z, on a

1

z
=

z̄

|z|2

Remarque. Soit M un point d'a�xe z, le module |z| représente la distance entre l'origine O
et le point M . A ce stade, on a besoin que le repère qui permet d'identi�er le plan à C soit
orthonormé. De même, si z0 ∈ C, |z− z0| représente la distance entre les images de z et z0 dans
le plan.

Proposition. Soit Ω(ω) un point du plan et r > 0 alors

1. Le cercle de centre Ω et de rayon r est l'ensemble {M(z) : |z − ω| = r}.
2. Le disque fermé de centre Ω et de rayon r est l'ensemble {M(z) : |z − ω| ≤ r}.
3. Le disque ouvert de centre Ω et de rayon r est l'ensemble {M(z) : |z − ω| < r}.

Proposition. Soit (z, z′) ∈ C2, le module présente les propriétés suivantes :

(Compatibilité avec la conjugaison) |z| = |z|
(Compatibilité avec la multiplication) |zz′| = |z||z′|

(Compatibilité avec l'inversion)

∣∣∣∣1z
∣∣∣∣ = 1

|z|
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Proposition. (*) Soit z un nombre complexe. On a :

∀z ∈ C, |Re(z)| ≤ |z| avec égalité si et seulement si z ∈ R
∀z ∈ C, Re(z) ≤ |z| avec égalité si et seulement si z ∈ R+

∀z ∈ C, |Im(z)| ≤ |z| avec égalité si et seulement si z ∈ iR
∀z ∈ C, Im(z) ≤ |z| avec égalité si et seulement si z ∈ iR+

Proposition. (*) Soit (z, z′) deux nombres complexes

(Inégalité triangulaire) |z + z′| ≤ |z|+ |z′|
(Inégalité triangulaire inversée)

∣∣|z| − |z′|
∣∣ ≤ |z − z′|

(Égalité du parallélogramme)
∣∣z + z′

∣∣2 + ∣∣z − z′
∣∣2 = 2(|z|2 + |z′|2)

Remarque. Géométriquement, l'inégalité triangulaire signi�e que le plus court chemin d'un
point à un autre est la ligne droite. En e�et, soit A, B et C trois points d'a�xes respectives a, b
et c alors AB = |b− a| ≤ |b− c|+ |c− a| = AC + CB.
L'inégalité triangulaire inversée traduit le fait que si deux points d'a�xe z et z′ sont séparés
d'une distance d = |z − z′|, alors la distance entre leur module est plus petite que d.
L'égalité du parallélogramme traduit le fait que dans un parallélogramme, la somme des carrés
des longueurs des diagonales est égale à la somme des carrés des longueurs des côtés.

Proposition. (*) Soit (z, z′) deux nombres complexes alors

|z + z′| = |z|+ |z′| ⇔


∃λ ∈ R+ : z′ = λz

ou

∃λ ∈ R+ : z = λz′
⇔


z = 0

ou

∃λ ∈ R+ : z′ = λz

On dit que l'inégalité triangulaire est une égalité si et seulement si z et z sont positivement liés.

III. Nombres complexes de module 1 et trigonométrie

On admet connues les propriétés usuelles des fonctions cosinus et sinus suivantes :

Proposition. Les fonctions cosinus et sinus sont 2π périodiques. La fonction cosinus réalise une
bijection entre [0, π] et [−1, 1] tandis que la fonction sinus réalise une bijection entre [−π/2, π/2]
et [−1, 1]. Elles véri�ent,

∀θ ∈ R, cos(θ)2 + sin(θ)2 = 1

De plus, pour tous réels a et b, on a

(*)


cos(a+ b) = cos a cos b− sin a sin b

cos(a− b) = cos a cos b+ sin a sin b

sin(a+ b) = sin a cos b+ cos a sin b

sin(a− b) = sin a cos b− cos a sin b

En particulier, pour tout réel θ, on a

(*)

{
cos 2θ = cos2 θ − sin2 θ = 2 cos2 θ − 1 = 1− 2 sin2 θ

sin 2θ = 2 sin θ cos θ
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Proposition. Soit (θ, θ′) ∈ R2. On a

cos θ = cos θ′ ⇔


θ′ ≡ θ [2π]

ou

θ′ ≡ −θ [2π]

et sin θ = sin θ′ ⇔


θ′ ≡ θ [2π]

ou

θ′ ≡ π − θ [2π]

En particulier,


cos θ′ = cos θ′

et

sin θ′ = sin θ′
⇔ θ ≡ θ′ [2π].

Dé�nition. On note U l'ensemble des nombres complexes de module 1.
L'image de U n'est autre que le cercle de centre O et de rayon 1 appelé cercle trigonométrique.

Proposition. (*) Soit z ∈ U. Il existe un réel θ, unique modulo 2π, tel que

z = cos(θ) + i sin(θ)

Dé�nition. Pour tout réel θ ∈ R, on note eiθ = cos(θ) + i sin(θ).

Remarque. D'après ce qui précède, l'application R → U, θ 7→ eiθ est surjective et 2π-périodique.
Sa restriction à [0, 2π[ (ou tout intervalle de la forme [a, a+ 2π[, a ∈ R) est bijective.

Proposition. ei0 = 1, eiπ/6 =

√
3

2
+

i

2
, eiπ/4 =

1 + i

2
, eiπ/3 =

1

2
+

√
3

2
i, i = eiπ/2 et −1 = eiπ .

Remarque. En particulier, −1 = eiπ . Cette dernière égalité est connue sous le nom d'identité
d'Euler sous la forme

eiπ + 1 = 0

et quali�ée par Richard Feynman de "formule la plus remarquable au monde" puisqu'elle contient
cinq des symboles fondamentaux des mathématiques.

Proposition. (*) Pour tout couples de réels (θ, ϕ), on a

ei(θ+ϕ) = eiθ eiϕ et e−iθ =
1

eiθ
= eiθ

Corollaire. Formules d'Euler :

∀θ ∈ R, cos θ =
eiθ + e−iθ

2
et sin θ =

eiθ − e−iθ

2i

Corollaire. Formule de Moivre :

∀n ∈ N, (cos(θ) + i sin(θ))n = cos(nθ) + i sin(nθ)

Grâce à la notation eiθ, nous disposons d'une paramétrisation du cercle trigonométrique.

C = {M(z), z ∈ U} = {M
(
eiθ

)
, θ ∈ R} = {M

(
eiθ

)
, θ ∈ [0, 2π[}

Nous allons en donner un autre, dite rationnelle à l'aide de la fonction tangente que nous allons
introduire.

Dé�nition. (*) On dé�nit la fonction tangente sur D = R \
{π

2
+ kπ, k ∈ Z

}
par

∀x ∈ D, tanx =
sinx

cosx
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Proposition. La fonction tangente est π-périodique et impaire i.e.

∀x ∈ D, tan(x+ π) = tanx et tan(−x) = − tanx

En�n, la fonction tangente est strictement croissante sur
]
−π

2
,
π

2

[
et véri�e

lim
x→−π

2

tanx = −∞ et lim
x→π

2

tanx = ∞

Nous admettrons qu'elle réalise une bijection de
]
−π

2
,
π

2

[
dans R.

Proposition. ∀(θ, θ′) ∈ D2
tan, tan θ = tan θ′ ⇔ θ ≡ θ′[π].

Remarque. Pour θ ∈
]
−π

2
,
π

2

[
, le réel tan θ n'est autre que la pente de la droite reliant l'origine

au point de coordonnées (cos θ, sin θ) i.e. d'a�xe eiθ.

Proposition. (*) Pour tous réels a et b appartenant à D tels que a+ b appartienne à D, on a

tan(a+ b) =
tan a+ tan b

1− tan a tan b

Pour tous réels a et b appartenant à D tels que a− b appartienne à D, on a

tan(a− b) =
tan a− tan b

1 + tan a tan b

Proposition. (*) Pour tout réel θ ̸≡ π[2π] i.e. θ ∈ R \ {π + 2kπ, k ∈ Z}, on peut dé�nir
t = tan(θ/2). On a alors

cos θ =
1− t2

1 + t2
, sin θ =

2t

1 + t2
et si, de plus, θ ̸≡ π/2[π], alors tan θ =

2t

1− t2

Proposition. (*) L'ensemble

{
M

(
1− t2

1 + t2
,

2t

1 + t2

)
, t ∈ R

}
est égal au cercle trigonométrique

privé du point d'a�xe −1.

IV. Forme trigonométrique

1.Argument d'un nombre complexe.

Proposition. Soit z un nombre complexe non nul. Il existe un réel θ, unique modulo 2π, tel que

z = |z|eiθ

Cette écriture s'appelle l'écriture trigonométrique (ou polaire) de z.
On appelle argument de z tout réel θ tel que z = |z|eiθ. Deux arguments d'un même nombre
complexe di�èrent d'un multiple de 2π.
On appelle argument principal de z l'unique argument de z appartenant à l'intervalle ]− π, π].

Remarque. Géométriquement, l'argument d'un nombre complexe non nul z d'image M est
l'angle que fait le vecteur

−−→
OM avec le vecteur unitaire de l'axe des abscisses

−→
i . Ainsi, l'ar-

gument du complexe conjugué de z, dont l'image s'obtient par symétrie par rapport à l'axe des
abscisses, est bien l'opposé de l'argument de z. On comprend aussi que l'argument d'un nombre
complexe soit dé�ni modulo 2π.
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Remarque. Pour mettre un nombre complexe non nul de la forme a + ib sous forme trigono-
métrique ρeiθ, on pose ρ =

√
a2 + b2 et on résout

cos θ =
a√

a2 + b2

sin θ =
b√

a2 + b2

mais on ne connait pas toujours une solution simple de ce système.

Proposition. Soit z et z′ deux complexes non nuls admettant θ et θ′ comme arguments. Alors
les complexes z̄, 1/z ont pour argument −θ et le complexe zz′ a pour argument θ + θ′.

Remarque. Attention lors de la multiplication d'un nombre complexe par un nombre réel, si z
admet θ comme argument alors 2z admet 2θ comme argument et −2z admet π + θ comme
argument.

Corollaire. (*) Soient trois points distincts du plan A, B et C d'a�xes a, b et c. L'angle

(
−−→
AB,

−→
AC) est l'argument du nombre complexe c−a

b−a mais aussi du nombre complexe (c− a) b− a.

Corollaire. (*) Soient trois points du plan A, B et C d'a�xes a, b et c. Les points A, B et C
sont alignés si et seulement si (c− a) b− a ∈ R

Corollaire. (*) Soient quatre points du plan A, B, C et D d'a�xes a, b, c et d tels que A ̸= B
et C ̸= D.
Les droites (AB) et (CD) sont parallèles si et seulement si (d− c) b− a ∈ R.
Les droites (AB) et (CD) sont orthogonales si et seulement si (d− c) b− a ∈ iR.

Proposition. (*) Soit a et b deux réels. Soit ρeiθ la forme trigonométrique de a+ ib alors

∀t ∈ R, a cos t+ b sin t = ρ cos(t− θ)

2. Factorisation par l'angle moitié

Proposition. (*) Soit θ un réel alors

1 + eiθ = eiθ/2 × 2 cos(θ/2)

En particulier, si cos(θ/2) est positif (resp. négatif) alors 1+eiθ admet θ/2 (resp θ/2+π) comme
argument. De même,

1− eiθ = eiθ/2 × (−2i sin(θ/2))

donc si sin(θ/2) est positif (resp. négatif) alors 1− eiθ admet θ/2−π/2 (resp θ/2+π/2) comme
argument.

Exercice. Soient θ et ϕ deux nombres réels. Quel est l'argument de eiθ + eiϕ ?

A l'aide de cette méthode, on peut retrouver les formules trigonométriques suivantes :

Proposition. (*) Pour tous réels a et b, on a

cos a+ cos b = 2 cos
a− b

2
cos

a+ b

2

cos a− cos b = −2 sin
a− b

2
sin

a+ b

2

sin a+ sin b = 2 cos
a− b

2
sin

a+ b

2

sin a− sin b = 2 cos
a+ b

2
sin

a− b

2
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Exercice. (*) Soit θ un réel. Prouver que

n∑
k=0

cos(kθ) =


sin ((n+ 1)x/2) cos(nx/2)

sin(x/2)
si x ̸∈ 2πZ

n+ 1 sinon

Déterminer de même
n∑

k=0

sin(kθ)

Exercice. (*) Soit n un entier naturel et x un réel, calculer :

Dn =

n∑
k=−n

eikx (Noyau de Dirichlet) et Fn =

n∑
k=0

Dk (Noyau de Féjer)

V. Exponentielle complexe

Dé�nition. On dé�nit l'exponentielle complexe d'un nombre complexe z = x+ iy par

ez = exeiy

On prolonge ainsi la dé�nition de l'exponentielle sur R

Proposition. L'exponentielle complexe est un morphisme i.e.

∀(z, z′) ∈ C2, ez+z′ = ezez
′

Proposition. Pour tout complexe z, |ez| = eRez et ez admet comme argument Imz.

Corollaire. ∀(z, z′) ∈ C2, ez = ez
′ ⇔ z − z′ ∈ 2iπZ.

Corollaire. ∀z ∈ C, |ez| = 1 ⇔ z ∈ iR.

Proposition. Soit a un nombre complexe non nul d'argument θ alors l'équation ez = a a une
in�nité de solutions :

S = {ln(|a|) + i(θ + 2kπ), k ∈ Z}

VI. Racines n-ièmes

1. Racines n-ièmes de l'unité

Dans R, l'équation xn = 1 pour n > 0 admet deux solutions qui sont ±1 si n est pair, ou bien
une seule x = 1 si n est impair. Cette séparation montre que l'ensemble R n'est pas le bon cadre
pour résoudre cette équation. Dans C, le résultat est uniforme comme le montre la proposition
suivante :

Proposition. (*) Soit n ∈ N⋆. L'équation zn = 1 admet exactement n solutions données par

ωk = e
2ikπ
n , k ∈ J0, n− 1K

Les nombres complexes ωk sont appelées racines n-ième de l'unité.

Dé�nition. Soit n ∈ N∗. L'ensemble des racines n-ièmes de l'unité est noté Un.

Proposition. Soit n ∈ N∗. On a Un = {ωk, k ∈ J0, n− 1K}, où ω = e2iπ/n.

Remarque. Les racines 3-ièmes de l'unité sont 1, j = e
2iπ
3 et j2 = j̄.

Proposition. (*) Soit n ≥ 3. Les images dans le plan des racines n-ièmes de l'unité sont les

sommets d'un polygone régulier à n côtés de longueur 2 sin
(π
n

)
.



8

2. Racines n-ièmes d'un nombre complexe non nul

Proposition. (*) Soit z0 un nombre complexe non nul. L'équation zn = z0 admet n solutions
distinctes données par

|z0|1/neiθ0/ne
2ikπ
n , k ∈ J0, n− 1K

où θ0 est un argument de z0. On les appelle racines n-ièmes de z0.

Proposition. Soit z0 un nombre complexe non nul et n ≥ 3. Les images dans le plan des racines

n-ièmes de z0 sont les sommets d'un polygone régulier à n côtés de longueur 2|z0|1/n sin
(π
n

)
.

3. Équation du second degré

Proposition. (*) Soit a ̸= 0, b et c trois nombres complexes. L'équation polynomiale du second
degré az2 + bz + c = 0 admet comme solution dans C les nombres complexes

−b± δ

2a

où δ est une racine carré du nombre complexe ∆ = b2 − 4ac.
Le complexe ∆ est appelé le discriminant de l'équation az2 + bz + c = 0. S'il est nul, l'équation
n'a qu'une solution −b/2a sinon elle en a deux z1 et z2 reliées par les relations :{

z1 + z2 = −b/a

z1z2 = c/a

Proposition. Soient a, b et c trois complexes tels que a ̸= 0.
Deux complexes z1 et z2 sont les racines du polynôme aX2 + bX + c si, et seulement si,{

z1 + z2 = −b/a

z1z2 = c/a

VII. Géométrie

1. Similitudes planes

Nous allons utiliser les complexes pour traduire les transformations classiques du plan : transla-
tions, homothétie, rotation, symétrie...

Dé�nition. On appelle translation de vecteur −→u l'application du plan qui transforme tout pointM

du plan en l'unique point M ′ dé�nit par
−−−→
MM ′ = −→u .

Dé�nition. On appelle rotation de centre Ω et d'angle θ l'application du plan qui transforme

tout point M du plan en l'unique point M ′ dé�nit par ΩM ′ = ΩM et
(−−→
ΩM,

−−→
ΩM ′

)
= θ.

Dé�nition. On appelle homothétie de centre Ω et de rapport λ ̸= 0 l'application du plan qui

transforme tout point M du plan en l'unique point M ′ dé�nit par
−−→
ΩM ′ = λ

−−→
ΩM .

Proposition. (*) La translation de vecteur −→u d'a�xe u transforme tout point M d'a�xe z en
un point M ′ d'a�xe z + u.
La rotation de centre Ω d'a�xe ω et d'angle θ transforme tout point M d'a�xe z en un point M ′

d'a�xe ω + eiθ(z − ω).
L'homothétie de centre Ω et de rapport λ ̸= 0 transforme tout point M d'a�xe z en un point M ′

d'a�xe ω + λ(z − ω).



9

Proposition. (*) Réciproquement, soient a et b deux nombres complexes tels que a soit non nul
et d'argument θ. La transformation qui, à tout point M d'a�xe z, associe le point M ′ d'a�xe
z′ = az + b est

� une translation si a = 1
� la composée de la rotation de centre Ω d'a�xe b

1−a et d'angle θ et de l'homothétie de centre
Ω et de rapport |a|. Ces deux transformations commutent.

Une telle transformation est appelée similitude plane directe.

Proposition. (*) Une similitude plane directe de la forme z 7→ az + b, a ̸= 0, multiple les
longueur par k = |a| et conserve les angles orientés. Ainsi, si A, B et C ont pour image les
points A′, B′ et C ′, alors

A′B′ = kAB et
(−−→
AB,

−→
AC

)
=

(−−→
A′B′,

−−→
A′C ′

)
2. Utilisation des complexes en géométrie

Les nombres complexes permettent de retrouver ou de prouver certains résultats géométriques

Proposition. (*) Soit A et B deux points diamétralement opposés d'un cercle C de centre Ω et
de rayon R > 0. Soit M un point distinct de A et B. On a l'équivalence suivante :

M ∈ C ⇐⇒
(−−→
MA,

−−→
MB

)
≡ π

2
[π].

Proposition. (*) Soit A et B deux points distincts d'un cercle C de centre Ω et de rayon R > 0.
Soit M un point distinct de A et B. On a l'équivalence suivante :

M ∈ C ⇐⇒
(−→
ΩA,

−→
ΩB

)
≡ 2

(−−→
MA,

−−→
MB

)
[2π].

VIII. Méthodes de calcul

1. Linéarisation (*)

Linéariser, c'est écrire cosn(θ) en fonction des cos(kθ) pour k ≤ n. Cela est utile pour le calcul
de primitives ou d'intégrales par exemple. Pour cela, on utilise la formule de Moivre et le binôme
de Newton. Prenons par exemple cos6(θ) :

cos6(θ) =

(
eiθ + e−iθ

2

)6

=
1

64

(
e6iθ + 6e4iθ + 15e2iθ + 20 + 15e2iθ + 6e−4iθ + e−6iθ

)
=

1

32

(
cos(6θ) + 6 cos(4θ) + 15 cos(2θ) + 20

)
(1)

Remarquez que les exponentielles se combinent deux à deux pour former les cosinus. Si l'on
développe un sinus comme sin6(θ), on obtient des sinus et des cosinus.

2. Polynômes de Tchebychev

Le problème "inverse", c'est-à-dire l'écriture de cos(nθ) comme un polynôme en cos θ et sin θ se
résout à l'aide de la formule de Moivre. Cette opération permet d'obtenir de jolies écritures de
cosinus et de sinus en fonction de radicaux. Prenons pour exemple cos(5θ) :

cos(5θ) = Re (cos(θ) + i sin(θ))5

= cos5(θ)− 10 cos3(θ) sin2(θ) + 5 cos(θ) sin4(θ)

= cos5(θ)− 10 cos3(θ)(1− cos2(θ)) + 5 cos(θ)(1− cos2(θ))2
(2)
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Si on pose θ = π/10, alors cos(5θ) = 0 et x = cos(θ) véri�e 16x5 − 20x3 + 5x = 0.

Comme x ̸= 0, x2 est racine du polynôme 16X2−20X+5, i.e. cos2(π/10) ∈

{
5 +

√
5

8
,
5−

√
5

8

}
.

On obtient donc une expression des cosinus en fonction de radicaux en tenant compte de la
décroissance de la fonction cosinus sur [0, π/2] :

cos(π/10) =

√
5 +

√
5

8
et cos(3π/10) =

√
5−

√
5

8

(*) Il faut savoir retrouver les expressions de cos(nt) et sin(nt) en fonction de cos t et sin t.

Théorème. (*) Pour tout entier naturel n, il existe un unique polynôme Pn tel que

∀θ ∈ R, Pn(cos θ) = cos(nθ).

Pour tout entier n non nul, le polynôme Pn est de degré n, de coe�cient dominant 2n−1, de
même parité que n et il admet n racines distinctes (xk)0≤k≤n−1 dé�nies par

∀k ∈ J0, n− 1K, xk = cos
(2k + 1)π

2n

Théorème. (*) La famille des polynômes (Pn)n∈N est liée par la relation :

∀n ∈ N, Pn+2 = 2XPn+1 − Pn

On retrouve que, pour tout entier n non nul, le polynôme Pn est de degré n, de coe�cient
dominant 2n−1 et de même parité que n.

Remarque. On a P0 = 1, P1 = X, P2 = 2X2 − 1, P3 = 4X3 − 4X, P4 = 8X4 − 8X2 + 1...

3. Utilisation des racines n-ièmes de l'unité (*)

Les nombres complexes permettent aussi de calculer des sommes portant sur les coe�cients
binomiaux. Par exemple, pour n ∈ N∗, les égalités suivantes sont une conséquence de la formule
du binôme de Newton :

2n = (1 + 1)n =
n∑

k=0

(
n

k

)
et 0 = (1− 1)n =

n∑
k=0

(−1)k
(
n

k

)
On en déduit

n∑
k=0

k pair

(
n

k

)
=

n∑
k=0

k pair

(
n

k

)
= 2n−1.

Dans ce qui précède, 1 et −1 sont les deux racines carrés de l'unité. On peut de même calculer
les sommes suivantes :

S0 =

n∑
k=0,k≡0 mod 3

(
n

k

)
S1 =

n∑
k=0,k≡1 mod 3

(
n

k

)
S2 =

n∑
k=0,k≡2 mod 3

(
n

k

)
Pour cela, on écrit 

(1 + 1)n = S0 + S1 + S2

(1 + j)n = S0 + jS1 + j2S2

(1 + j2)n = S0 + j2S1 + jS2

ce qui permet d'obtenir : 
3S0 = 2n + 2 cos(nπ/3)

3S1 = 2n + 2 cos((n− 2)π/3)

3S2 = 2n + 2 cos((n+ 2)π/3)


