Nombres complexes et trigonométrie

I. Nombres complexes

Définition. On définit I'ensemble C des nombres complexes comme ['ensemble des éléments
de R?, muni de l'addition usuelle sur R? i.e.

Y(a,b,c,d) € R*,  (a,b) + (¢,d) = (a+b,c+ d)
L’élément (0,1) est noté i, ’élément (a,b) est noté a + ib.

Si I'on considére un nombre complexe z = a + ib, (a,b) € R?, on dit que a est la partie réelle
de z et b la partie imaginaire de z. On note

a=TRe(z) et b=Im(z)

En se fixant un repere orthonormé direct (O, i, ] ), on identifie C et le plan usuel.

A un point M (respectivement a un vecteur i) de coordonnées (z,y) dans le repére, c’est-a-dire tel
que OM =z i +yj (respectivement U =uzxi +y j ), on associe le nombre complexe z = z+iy.
On dit alors que z est 'affixe de M (respectivement 'affixe du vecteur 7) et que M est 'image
du nombre complexe z. On note alors M (z).

Définition. Un nombre complexe dont la partie imaginaire est nulle est dit imaginaire pur.
L’ensemble des imaginaires purs est noté iR car il est constitué des éléments de la forme ib, b € R.

Définition. On définit sur C une multiplication X par
Y(a,b,c,d) € RY,  (a+1ib) x (¢ +id) = (ac — bd) + i(ad + be)

En particulier, on retrouve que 2 = —1.
Muni des lois usuelles + et x, ’ensemble C a une structure de corps commutatif, notion détaillée
plus tard et qui peut étre ignorée lors d’une premiére lecture.

Proposition. Soit (z,2') € C%, on a
Re(z + 2') = Re(z) + Ré(2') et Im(z+ 2') = Im(z) + Im(2')
Re(z22') = Re(2)Re(2') — Im(2)Im(2’) et Im(z22') = Re(2)Im(z") + Im(2)Re(2)

Définition. Soit z = a + ib un nombre complexe, on note Z le nombre compleze conjugué de z,
défini par
Z=a—1b

Dans le plan complexe, la conjugaison associe & un point d’affixe z le point d’affixe Z qui est
obtenu par symétrie par rapport a I’axe des réels.
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Proposition. Pour tout nombre compleze z, on a

Re(z)zz—;z et Tm(z) = 2~

Par conséquent,

zeReIm(z)=02=2 et z€iR< Re(z) =0 2=-2

-

Un nombre complexe est réel si et seulement si le point d’affixe z appartient a la droite (O, 1)
(aussi appelée droite réelle). Un nombre complexe est imaginaire pur si et seulement si le point
d’affixe z appartient a la droite (O, 7).

Proposition. L’opération de conjugaison d’un nombre complexe posséde les propriétés suivantes,
pour tout (z,2') € C? :

(Involutivité) Z = z

(Compatibilité avec ’addition)

z+2 =z+7
—_

z
(Compatibilité avec la multiplication) zz2' =Zz'

1
(Compatibilité avec inversion) () st z#0
z

II. Module d’un nombre complexe

Soit z = a 4 ib € C. Le nombre 2Z = a® + b® est un réel positif, ce qui justifie la définition
suivante.

Définition. Soit z = a + ib un nombre complexe. On note |z| le réel posilif appelé module de z

défini par
|z| = V2z = Va2 + b?

Remarque. La notation du module d’un nombre complexe coincide avec la valeur absolue d’un
nombre réel : si z est réel, alors son module n’est autre que sa valeur absolue. Il n’y a donc pas
de conflit dans les notation, le module étend la valeur absolue des nombres réels & ’ensemble des
nombres complezes.

Proposition. Pour tout nombre compleze non nul z, on a

1 Z

Remarque. Soit M un point d’affize z, le module |z| représente la distance entre l'origine O
et le point M. A ce stade, on a besoin que le repére qui permet d’identifier le plan & C soit
orthonormé. De méme, si zg € C, |z — zg| représente la distance entre les images de z et zo dans
le plan.
Proposition. Soit Q(w) un point du plan et v > 0 alors

1. Le cercle de centre Q et de rayon r est l'ensemble {M(z) : |z —w| =1r}.

2. Le disque fermé de centre Q et de rayon r est U'ensemble {M(z) : |z — w| < r}.

3. Le disque ouvert de centre Q0 et de rayon r est Uensemble {M(z) : |z —w| < r}.

Proposition. Soit (z,2') € C2, le module présente les propriétés suivantes :

(Compatibilité avec la conjugaison) |Z| = |z|
(Compatibilité avec la multiplication) |22'| = |z||7/|

(Compatibilité avec l'inversion)

1' 1
|2]



Proposition. (*) Soit z un nombre complexe. On a :

Vz € C, |Re(2)| < |z| avec égalité si et seulement si z € R
Vz € C, Re(z) < |7 avec égalité si et seulement si z € R
Vz e C, |Im(2)| < |z|  avec égalité si et seulement si z € iR

Vz € C, Im(z) < |z|  avec égalité si et seulement si z € iRT
Proposition. (*) Soit (z,2') deuz nombres complezes

(Inégalité triangulaire) |z +2'| < |z| + ||
(Inégalité triangulaire inversée) ||z| — |z’|‘ <l|z—7|

(Egalité du parallélogramme) |z + z"2 + |z — 7/‘2 =2(]2* +121%)

Remarque. Géométriquement, l'inégalité triangulaire signifie que le plus court chemin d’un
point & un autre est la ligne droite. En effet, soit A, B et C trois points d’affizes respectives a, b
et c alors AB=|b—a|<|b—c|+|c—a|=AC+ CB.

L’inégalité triangulaire inversée traduit le fait que si deuz points d’affize z et 2’ sont séparés
d’une distance d = |z — 2’|, alors la distance entre leur module est plus petite que d.

L’égalité du parallélogramme traduit le fait que dans un parallélogramme, la somme des carrés
des longueurs des diagonales est égale d la somme des carrés des longueurs des cotés.

Proposition. (*) Soit (z,2') deuz nombres complezes alors

INERT : 2 =)\ z=0
|z + 2| = |2| + || & ¢ ou << ou
INeERT : 2=\ INeERT : 2/ =Xz

On dit que linégalité triangulaire est une égalité si et seulement si z et z sont positivement liés.

ITI. Nombres complexes de module 1 et trigonométrie

On admet connues les propriétés usuelles des fonctions cosinus et sinus suivantes :
Proposition. Les fonctions cosinus et sinus sont 2w périodiques. La fonction cosinus réalise une
bijection entre [0, 7| et [—1, 1] tandis que la fonction sinus réalise une bijection entre [—m /2, 7/2]

t [—1,1]. Elles vérifient,
V6 € R, cos(6)? +sin(9)? = 1

De plus, pour tous réels a et b, on a

(*)

(a+0)

cos(a — b) = cosacosb + sinasinb
( ) = sinacosb + cosasinb
(a—b)

=sinacosb — cosasinb

En particulier, pour tout réel 0, on a

(*) cos20 = cos? 0 —sin®h = 2cos’H —1=1—2sin%0
sin 20 = 2sin 6 cos 0



Proposition. Soit (6,0') € R?. On a

0 =6 [27] 0 =6 [27]
cosf = cosf < { ou et sinf =sind < { ou
0 = —0 [27] 0 =m—0[2n]

cos = cost
En particulier, et & 60=0 27

sinf = sin @’

Définition. On note U l'ensemble des nombres complexes de module 1.
L’image de U n’est autre que le cercle de centre O et de rayon 1 appelé cercle trigonométrigue.

Proposition. (*) Soit z € U. Il existe un réel 0, unique modulo 27, tel que
z = cos(0) + isin(f)
Définition. Pour tout réel € R, on note € = cos(#) + isin(6).

Remarque. D’aprés ce qui précede, Uapplication R — U, 6 — € est surjective et 2m-périodique.
Sa restriction a [0,2n[ (ou tout intervalle de la forme |a,a + 27|, a € R) est bijective.

) ) ) ) 1 . 1 ) )
Proposition. ¢ =1, ¢"/6 = \é§ + %, e/t = %, eim/3 = 3 + \ggi, i=e"/2 ef —1 =ei™ .

Remarque. En particulier, —1 = €™ . Cette derniére égalité est connue sous le nom d’identité
d’Euler sous la forme
e +1=0

et qualifiée par Richard Feynman de "formule la plus remarquable au monde” puisqu’elle contient
cing des symboles fondamentaur des mathématiques.

Proposition. (*) Pour tout couples de réels (0, ¢), on a
0F90) — W ei® o 70 = i = e

Corollaire. Formules d’Euler :

0, —if 0 —if
Vo € R, cos@z% et sinf = ¢

Corollaire. Formule de Moivre :

Vn €N, (cos(#) + isin(F))" = cos(nh) + i sin(nh)

0

Gréce a la notation €, nous disposons d’une paramétrisation du cercle trigonométrique.

C={M(z), e U} = {M (ew) L OER) = {M (ew) L0 [0,2n]}

Nous allons en donner un autre, dite rationnelle a l'aide de la fonction tangente que nous allons
introduire.

Définition. (*) On définit la fonction tangente sur D =R\ {g +km, k€ Z} par

sinx

Ve e D, tanx =
cos T



Proposition. La fonction tangente est m-périodique et impaire i.e.

Ve € D, tan(x+7) =tanz et tan(—z) = —tanz
. . _ T L
Enfin, la fonction tangente est strictement croissante sur ] —5 5{ et vérifie

lim tanz = —oc0 et lim tanxz = oo

_T us
r—r 2 T—r 2

Nous admettrons qu’elle réalise une bijection de }—g, g[ dans R.

Proposition. V(0,0') € D? tanf = tan 6’ < 0 = 0'[x].

tan»

T T
Remarque. Pour 6 € }—5, 5 [, le réel tan 0 n’est autre que la pente de la droite reliant l'origine

au point de coordonnées (cos0,sin @) i.e. d’affive ¢,
Proposition. (*) Pour tous réels a et b appartenant ¢ D tels que a + b appartienne o D, on a

tana + tanb

t b)y=———
an(a + b) 1 —tanatanb

Pour tous réels a et b appartenant a D tels que a — b appartienne & D, on a

tan( b) tana — tanb
an(a —b) = ———
1+ tanatanb

Proposition. (*) Pour tout réel 0 # w[2n] i.e. 6 € R\ {7 + 2km, k € Z}, on peut définir
t =tan(6/2). On a alors

1—¢2 2t 2t
sinf = et si, de plus, 0 # 7/2[r|, alors tanf = T

0= ———
o8 14+ t2° 1+ t2

1—t2 2t

Proposition. (*) L’ensemble {M (1—1—152’ e

privé du point d’affize —1.

> , t € R} est égal au cercle trigonométrique

IV. Forme trigonométrique

1.Argument d’un nombre complexe.

Proposition. Soit z un nombre complexe non nul. Il existe un réel 0, unique modulo 27, tel que
z = |z|e?

Cette écriture s’appelle 'écriture trigonométrique (ou polaire) de z.

On appelle argument de z tout réel 0 tel que z = |z|e’. Deux arguments d’un méme nombre
compleze different d’un multiple de 2.
On appelle argument principal de z 'unique argument de z appartenant a Uintervalle | — m, 7).

Remarque. Géométriquement, Uargument d’un nombre complexe non nul z d’image M est
angle que fait le vecteur OM avec le vecteur unitaire de l'axe des abscisses i . Ainsi, l'ar-
gument du complexe conjugué de z, dont [’tmage s’obtient par symétrie par rapport a laxze des
abscisses, est bien 'opposé de l'argument de z. On comprend aussi que l'argument d’un nombre
complexe soit défini modulo 2m.



Remarque. Pour mettre un nombre complexe non nul de la forme a + ib sous forme trigono-
mélrique pew, on pose p =+ a?+ b2 et on résout

a
cosl) = ——
va? + b2
. b
sinf =

va? + b2
mais on ne connait pas toujours une solution simple de ce systéme.

Proposition. Soit z et 2’ deuz complexes non nuls admettant 0 et 6 comme arguments. Alors
les complexes Z, 1/z ont pour argument —0 et le compleze zz' a pour argument 6 + 6.

Remarque. Atlention lors de la multiplication d’un nombre complexe par un nombre réel, si z
admet 0 comme argument alors 2z admet 20 comme argument et —2z admet m + 6 comme
argument.

Corollaire. (*) Soient trois points distincts du plan A, B et C d’affizes a, b et c. L’angle

(A ,fﬁ) est I'argument du nombre complexve (=% mais aussi du nombre compleze (c —a)b— a.

Corollaire. (*) Soient trois points du plan A, B et C d’affizes a, b et c. Les points A, B et C

sont alignés si et seulement si (¢ —a)b—a € R

Corollaire. (*) Soient quatre points du plan A, B, C et D d’affizes a, b, ¢ et d tels que A # B
et C'# D.
Les droites (AB) et (CD) sont paralléles si et seulement si (d —c)b—a € R.

Les droites (AB) et (CD) sont orthogonales si et seulement si (d —c)b—a € iR.

Proposition. (*) Soit a et b deuz réels. Soit pe’ la forme trigonométrique de a + ib alors

Vt € R, acost+ bsint = pcos(t—6)

2. Factorisation par I’angle moitié
Proposition. (*) Soit 0 un réel alors
1+ € =2 % 2c08(0/2)

En particulier, si cos(0/2) est positif (resp. négatif) alors 14-¢* admet 0/2 (resp 0/2-+m) comme
argument. De méme, A ‘
1— e =92 x (—2isin(0/2))

donc si sin(0/2) est positif (resp. négatif) alors 1 — e admet 0/2 — /2 (resp /2 +7/2) comme
argument.

Exercice. Soient 0 et ¢ deuz nombres réels. Quel est Uargument de e + ¢'¢ ?
A Taide de cette méthode, on peut retrouver les formules trigonométriques suivantes :

Proposition. (*) Pour tous réels a et b, on a

a—>b a+b
cosa + cosb = 2 cos cos 5

. a—b . a+b
cosa — cosb = —2sin sin >

. . a—b . a+bd

sina + sinb = 2 cos sin 5

a a—>
sinag — sinb = 2 cos sin
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Exercice. (*) Soit 0 un réel. Prouver que
n sin ((n + 1)x/2) cos(nz/2)
Z cos(k) = sin(x/2)
k=0

n+1 sinon

st x & 217

n
Déterminer de méme Zsin(k@)
k=0

Exercice. (*) Soit n un entier naturel et x un réel, calculer :

n n
D, = Z e** (Noyau de Dirichlet) et F, = ZDk (Noyau de Féjer)
k=—n k=0

V. Exponentielle complexe

Définition. On définit 'exponentielle complexe d’un nombre compleze z = x + iy par
e* = e%e
On prolonge ainsi la définition de Uexponentielle sur R
Proposition. L’ezponentielle complexe est un morphisme i.e.
V(z,2) € C2, et =¢*e”

Rez

Proposition. Pour tout compleze z, |e*| = e et € admet comme argument Imz.

Corollaire. V(z,2') € C?, ¢ =¢ & z— 2 € 2inZ.
Corollaire. Vz € C, |¢*| =1« 2z €iR.

Proposition. Soit a un nombre complexe non nul d’argument 0 alors l'équation e* = a a une
infinité de solutions :

S = {In(|a|) +i(0 + 2kn), k € Z}

VI. Racines n-iémes

1. Racines n-iémes de 'unité

Dans R, I’équation 2" = 1 pour n > 0 admet deux solutions qui sont 41 si n est pair, ou bien
une seule £ = 1 si n est impair. Cette séparation montre que I'ensemble R n’est pas le bon cadre
pour résoudre cette équation. Dans C, le résultat est uniforme comme le montre la proposition
suivante :

Proposition. (*) Soit n € N*. L’équation 2" = 1 admet exactement n solutions données par

2ikm

wp=¢€n , ke]0,n—1]

Les nombres complexes wy sont appelées racines n-iéme de l’'unité.

Définition. Soit n € N*. L’ensemble des racines n-iémes de ['unité est noté U,.
Proposition. Soit n € N*. On a U, = {w*, k € [0,n — 1]}, o1 w = ¥/,
Remarque. Les racines 3-iémes de l’'unité sont 1, j = s et j2=17.

Proposition. (*) Soit n > 3. Les images dans le plan des racines n-iémes de 'unité sont les

T
sommets d’un polygone régulier o n cotés de longueur 2sin (—)
n



2. Racines n-iémes d’un nombre complexe non nul

Proposition. (*) Soit zy un nombre complexe non nul. L’équation z" = zy admet n solutions

distinctes données par
2ikm

no, ke0,n—1]

‘Zoyl/nezeo/ne
ot 6y est un argument de zg. On les appelle racines n-iémes de zg.

Proposition. Soit zg un nombre complexe non nul et n > 3. Les images dans le plan des racines

.\ P N Ny . 7T
n-iemes de zg sont les sommets d’un polygone régulier & n cotés de longueur 2\z0|1/” sin (—)
n

3. Equation du second degré

Proposition. (*) Soit a # 0, b et ¢ trois nombres complezxes. L’équation polynomiale du second
degré az? + bz + ¢ = 0 admet comme solution dans C les nombres compleves

=)
2a

ol § est une racine carré du nombre compleze A = b*> — 4ac.
Le compleze A est appelé le discriminant de Uéquation az®> + bz + ¢ = 0. S’il est nul, l'équation
n'a qu’une solution —b/2a sinon elle en a deux z1 et zy reliées par les relations :

{21 + 29 = —b/a

Z1%9 = c/a

Proposition. Soient a, b et c trois complezes tels que a # 0.
Deuz complexes z1 et zo sont les racines du polynome aX? + bX + c si, et seulement si,

{21 + 29 = —b/a

z129 = c/a

VII. Géométrie

1. Similitudes planes

Nous allons utiliser les complexes pour traduire les transformations classiques du plan : transla-
tions, homothétie, rotation, symétrie...

Définition. On appelle translation de vecteur v Uapplication du plan qui transforme tout point M
du plan en Uunique point M’ définit par MM’ = .

Définition. On appelle rotation de centre Q0 et d’angle 0 Uapplication du plan qui transforme
s —
tout point M du plan en l'unique point M’ définit par QM' = QM et (Q.M7 QM’) =4.

Définition. On appelle homothétie de centre et de rapport A # 0 Uapplication du plan qui
transforme tout point M du plan en l'unique point M’ définit par QM' = \QM .

Proposition. (*) La translation de vecteur U d’affive u transforme tout point M d’affize z en
un point M’ d’affize z + u.

La rotation de centre Q d’affize w et d’angle 0 transforme tout point M d’affize z en un point M’
d’affire w + (2 — w).

L’homothétie de centre Q et de rapport X\ # 0 transforme tout point M d’affize z en un point M’
d’affize w + Az — w).



Proposition. (*) Réciproqguement, soient a et b deux nombres complexes tels que a soit non nul
et d’argument 0. La transformation qui, a tout point M d’affize z, associe le point M’ d’affize
2 =az+0b est
— une translation sia =1
— la composée de la rotation de centre 2 d’affize % et d’angle 0 et de I’homothétie de centre
Q et de rapport |a|. Ces deuz transformations commutent.
Une telle transformation est appelée similitude plane directe.

Proposition. (*) Une similitude plane directe de la forme z — az + b, a # 0, multiple les
longueur par k = |a| et conserve les angles orientés. Ainsi, si A, B et C ont pour image les
points A', B' et C', alors

A'B = kAB et (ﬁ,ﬁ) - (ﬁ,ﬁ)

2. Utilisation des complexes en géométrie
Les nombres complexes permettent de retrouver ou de prouver certains résultats géométriques

Proposition. (*) Soit A et B deuz points diamétralement opposés d’un cercle C de centre §) et
de rayon R > 0. Soit M un point distinct de A et B. On a 'équivalence suivante :

[].

Proposition. (*) Soit A et B deux points distincts d’un cercle C de centre Q) et de rayon R > 0.
Soitt M un point distinct de A et B. On a 'équivalence suivante :

M € C < (QA,QB) = 2 (MA, MB) [2r].

.

MeC&(m,Aﬁ)

VIII. Méthodes de calcul

1. Linéarisation (*)

Linéariser, c’est écrire cos™(#) en fonction des cos(kf) pour k < n. Cela est utile pour le calcul
de primitives ou d’intégrales par exemple. Pour cela, on utilise la formule de Moivre et le binéme
de Newton. Prenons par exemple cos®(6) :

i0 —i0\ 6

_ 6i4 <€6i9+664i9+15621’0_’_20_’_15621'9_’_66741‘6_’_6761'9) (1)

= 3—2(005(60) + 6 cos(46) + 15 cos(26) + 20)

Remarquez que les exponentielles se combinent deux & deux pour former les cosinus. Si 'on
développe un sinus comme sin®(#), on obtient des sinus et des cosinus.

2. Polynémes de Tchebychev

Le probléme "inverse", c’est-a-dire 1’écriture de cos(n#) comme un polynome en cosf et sinf se
résout & l'aide de la formule de Moivre. Cette opération permet d’obtenir de jolies écritures de
cosinus et de sinus en fonction de radicaux. Prenons pour exemple cos(50) :

cos(50) = Re (cos(f) + isin(h))®
= cos®(#) — 10 cos®(6) sin?(0) + 5 cos(f) sin?(0) (2)
= cos’(#) — 10 cos®()(1 — cos*(6)) + 5 cos(0)(1 — cos®(6))?
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Si on pose § = 7/10, alors cos(50) = 0 et = = cos(f) vérifie 162> — 202> + 5z = 0.
5+v5 5—5
8 8
On obtient donc une expression des cosinus en fonction de radicaux en tenant compte de la
décroissance de la fonction cosinus sur [0, 7/2] :

> +8\/5 et cos(37/10) = > _8\/5

Comme z # 0, 2 est racine du polynéme 16X2 —20X +5, i.e. cos?(7/10) €

cos(m/10) =

(*) 11 faut savoir retrouver les expressions de cos(nt) et sin(nt) en fonction de cost et sint.
Théoréme. (*) Pour tout entier naturel n, il existe un unique polynéme P, tel que
V8 € R, P,(cosf) = cos(nb).

Pour tout entier n non nul, le polynéme P, est de degré n, de coefficient dominant 21, de
méme parité que n et il admet n racines distinctes (xy)o<k<n—1 définies par

(2k+ 1)
2n
Théoréme. (*) La famille des polynomes (Pp),cy est lie par la relation :

V¥n €N, Poio=2XPy— P,

Vk € [0,n — 1], z = cos

On retrouve que, pour tout entier m non nul, le polyndme P, est de degré n, de coefficient
dominant 27" et de méme parité que n.

Remarque. Ona Py=1, P =X, P, =2X? -1, Py =4X3% —4X, P, =8X* —8X?+1...

3. Utilisation des racines n-iémes de 'unité (*)

Les nombres complexes permettent aussi de calculer des sommes portant sur les coeflicients
binomiaux. Par exemple, pour n € N*| les égalités suivantes sont une conséquence de la formule
du binéme de Newton :

2 — (141)" = zn: (Z) ot 0=0-1"= zn:(_l)k<z>

k=0 k=0
On en déduit

2 ()= 2 (@)=

k pair k pair
Dans ce qui précéde, 1 et —1 sont les deux racines carrés de 'unité. On peut de méme calculer
les sommes suivantes :

"~ n -~ n - n
SR ST (9 R TN SR (4SS DRI ()
k=0,k=0 mod 3 k=0,k=1 mod 3 k=0,k=2 mod 3

Pour cela, on écrit
(I1+1)" =Sy + S1+ 52

(L4 4)™ = So + jS1 + j*Sa
(145%™ = So + j>S1 + 452

ce qui permet d’obtenir :
35Sy = 2" 4+ 2cos(nm/3)

351 =2"+2cos((n — 2)w/3)
353 = 2" +2cos((n + 2)7/3)



