
Ensembles et applications

I. Ensembles

1. Généralités

La notion d'ensemble est une notion intuitive : c'est une collection d'objets appelés éléments.

Par exemple, l'ensemble N des entiers naturels, l'ensemble Z des entiers relatifs, l'ensemble Q
des rationnels et l'ensemble R des nombres réels.

Lorsqu'un élément x appartient à un ensemble E, on note x ∈ E.

La négation x ∈ E se note x ̸∈ E.

Remarque. Il y a plusieurs façons de dé�nir un ensemble :

� de manière descriptive : A = {0, 1, 2}

� de manière conditionnelle : A = {n ∈ N : n ≤ 2}

Dé�nition. On dit qu'un ensemble F est un sous-ensemble (ou une partie) de l'ensemble E si

tout élément de F est aussi élément de E. On dit aussi que F est inclus dans E et on note F ⊂ E.

F ⊂ E ⇔ ∀x ∈ F, x ∈ E

Par exemple, on a la chaine d'inclusion suivante :

N ⊂ Z ⊂ Q ⊂ R

Proposition. Soient E, F et G trois ensembles, on a

� ∅ ⊂ E.

� E ⊂ E, ce qui signi�e que l'inclusion est ré�exive.

� (E ⊂ F ) ∧ (F ⊂ G) ⇒ (E ⊂ G) , ce qui signi�e que l'inclusion est transitive

Dé�nition. Deux ensembles E et F sont dits égaux et on note E = F si E est inclus dans F et

F est inclus dans E.

E = F ⇔ (F ⊂ E) ∧ (E ⊂ F ) ⇔ (∀x ∈ F, x ∈ E) ∧ (∀x ∈ E, x ∈ F )

Remarque. On a toujours E = E. La relation "=" est ré�exive.

En pratique, pour montrer que deux ensembles E et F sont égaux, on procède ainsi par double

inclusion. On commence par supposer que x ∈ F et on montre que x ∈ E ce qui montre la

première inclusion F ⊂ E puis on montre l'inclusion réciproque E ⊂ F de la même manière.

Proposition. Si A et B sont deux parties de E, alors on a l'équivalence

A = B ⇔ (∀x ∈ E, x ∈ A ⇔ x ∈ B)
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Dé�nition. L'ensemble des parties d'un ensemble E est un ensemble noté P(E). On a donc

F ⊂ E ⇔ F ∈ P(E)

Proposition. Soient E et F deux ensembles, on a alors

E ∈ P(E), ∅ ∈ P(E)

a ∈ E ⇔ {a} ⊂ E ⇔ {a} ∈ P(E)

E ⊂ F ⇔ P(E) ⊂ P(F )

2. Opérations sur les ensembles

Dé�nition. On appelle intersection de deux ensembles E et F et on note E∩F , l'ensemble dont

les éléments appartiennent à la fois à E et à F .

x ∈ E ∩ F ⇔ (x ∈ E) ∧ (x ∈ F )

On dit que deux ensembles E et F sont disjoints si leur intersection est l'ensemble vide. On dit

qu'il s'intersectent ou qu'ils ont une intersection non vide sinon.

Proposition. Soient E, F et G trois ensembles, on a alors

E ∩ ∅ = ∅ E ∩ E = E

E ∩ F = F ∩ E (La loi ∩ est commutative)

(E ∩ F ) ∩G = E ∩ (F ∩G) (La loi ∩ est associative)

L'associativité de la loi ∩ autorise à noter E ∩F ∩G l'ensemble (E ∩F )∩G puisque la position

des parenthèse n'a aucune importance.

Proposition. Soient E et F deux ensembles, on a alors

F ⊂ E ⇔ E ∩ F = F

P(E ∩ F ) = P(E) ∩ P(F )

Dé�nition. On appelle réunion de deux ensembles E et F et on note E ∪ F , l'ensemble dont

les éléments appartiennent à E ou bien à F .

x ∈ E ∪ F ⇔ (x ∈ E) ∨ (x ∈ F )

Proposition. Soient E, F et G trois ensembles, on a alors

E ∪ ∅ = E E ∪ E = E

E ∪ F = F ∪ E (La loi ∪ est commutative)

(E ∪ F ) ∪G = E ∪ (F ∪G) (La loi ∪ est associative)

De même que pour l'intersection, on note E ∪ F ∪G l'ensemble (E ∪ F )∪G puisque la position

des parenthèse n'a aucune importance.

Proposition. Soient E, F et G trois ensembles, on a alors

F ⊂ E ⇔ E ∪ F = E

P(E ∪ F ) ⊃ P(E) ∪ P(F )

Exercice. Soient E et F deux ensembles.

On a P(E ∪ F ) = P(E) ∪ P(F ) si, et seulement si, E ⊂ F ou F ⊂ E.
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Proposition. Soient E, F et G trois ensembles, on a alors

E ∪ (F ∩G) = (E ∪ F ) ∩ (E ∪G)

E ∩ (F ∪G) = (E ∩ F ) ∪ (E ∩G)

On dit que la loi ∪ est distributive par rapport à la loi ∩ et inversement.

Dé�nition. Soit F une partie d'un ensemble E. On appelle complémentaire de F dans E et on

note CEF ou E\F (ou bien F̄ s'il n'existe pas d'ambiguïté sur l'ensemble E) l'ensemble constitué

des éléments de E qui n'appartiennent pas à F .

x ∈ E\F ⇔ (x ∈ E) ∧ (x ̸∈ F )

Proposition. Soient A et B deux parties de E, on a alors

∅ = E E = ∅

A = A

A = B ⇔ B = A

A ⊂ B ⇒ B ⊂ A

A ∪B = A ∩B

A ∩B = A ∪B

Dé�nition. Plus généralement, si A et B sont deux ensembles, on note A\B l'ensemble formé

des éléments de A n'appartenant pas à B.

A\B = {x ∈ A : x ̸∈ B} = A ∩B

Dé�nition. Soient E et F deux ensembles.

On appelle produit cartésien de E et F et on note E×F l'ensemble formé des couples d'éléments

dont le premier est dans E et le deuxième dans F . Ainsi, on a :

(x, y) ∈ E × F ⇔ (x ∈ E) ∧ (y ∈ F )

Proposition. Soient A, A′,B, B′ et C des parties de E, on a alors

A×B = ∅ ⇔ (A = ∅) ∨ (B = ∅)
(A ⊂ A′) ∧ (B ⊂ B′) ⇒ A×B ⊂ A′ ×B′

A× (B ∪ C) = (A×B) ∪ (A× C)

A× (B ∩ C) = (A×B) ∩ (A× C)

(A×B = A× C) ∧ (A ̸= ∅) ⇒ B = C

Exercice. Soient A, B, C et D des ensembles. Montrer

(A ∪B)× (C ∪D) ⊃ (A× C) ∪ (B ×D)

(A ∩B)× (C ∩D) = (A× C) ∩ (B ×D)

Dé�nition. On généralise l'intersection et la réunion de deux ensembles de la manière suivante

: soit F ⊂ P(E), une famille (non nécessairement �nie) de parties de E. On appelle intersection

et réunion des éléments de F les ensembles :⋂
X∈F

X = {x ∈ E : ∀X ∈ F , x ∈ X}

⋃
X∈F

X = {x ∈ E, ∃X ∈ F : x ∈ X}

On dit que F est un recouvrement de E si
⋃
X∈F

X = E.
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Remarquons que lorsque la famille F ne contient que deux parties de E, on retrouve la dé�nition

de l'intersection et de la réunion présentée ci-dessus.

Dé�nition. Soit F un recouvrement de E. On dit que F est une partition de E si ses éléments

sont non vides et deux à deux disjoints, c'est à dire

∀(X,X ′) ∈ F2, X ̸= X ′ ⇒ X ∩X ′ = ∅

II. Applications

1. Injectivité, surjectivité, bijectivité d'une application

Dé�nition. Soient E et F deux ensembles. Une application f de E dans F est la donnée d'une

partie Gf de E × F telle que, pour tout élément x de E, l'ensemble {y ∈ F : (x, y) ∈ Gf}
contienne exactement un élément.

On dit que E est l'ensemble de départ, F est l'ensemble d'arrivée et Gf est le graphe de l'application

f .
Pour tout élément x de E, l'unique élément de l'ensemble {y ∈ F : (x, y) ∈ Gf} est appelé image

de x par f et on le note f(x).

Pour dire que f est une application de E dans F qui à tout élément x de E associe l'image f(x),
on notera f : E → F, x 7→ f(x)
On note FE l'ensemble des applications de E dans F .

Dé�nition. Soit f ∈ FE et y ∈ F . On appelle antécédent de y tout élément x de E tel que

y = f(x).

Exemple. On dé�nit l'application identité de E notée IdE par

IdE : E → E, x 7→ x

Soit a un élément de F , l'application constante à a associe à tout élément de E l'élément a.

Remarque.

f : R+ → R, x 7→ y tel que y2 = x n'est pas une application.

f : R+ → R+, x 7→ y tel que y2 = x est une application.

f : R → R, x 7→ tanx n'est pas une application

Dé�nition. Soit f ∈ FE une application. On dit que f est injective (ou que f est une injection)

si tout élément de F admet au plus un antécédent par f , ce qui s'écrit

∀(x, x′) ∈ E2 : f(x) = f(x′) ⇒ x = x′

ou encore, par contraposée

∀(x, x′) ∈ E2 : x ̸= x′ ⇒ f(x) ̸= f(x′)

Dé�nition. Soit f ∈ FE une application. On dit que f est surjective (ou que f est une surjec-

tion) si tout élément de F admet au moins un antécédent par f .

Dé�nition. Soit f ∈ FE une application. On dit que f est bijective (ou que f est une bijection)

si tout élément de F admet exactement un antécédent par f . Une application est donc bijective

si et seulement si elle est à la fois injective et surjective.

Remarque. Si f ∈ FE est bijective alors on peut dé�nir l'application

F → E, y 7→ l'unique x ∈ E tel que y = f(x).

Dé�nition. On appelle suite d'élément de E tout élément de l'ensemble EN. Si on appelle u
une suite de E, il est habituel de noter un l'image de l'entier n au lieu de u(n).
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2. Composition d'applications

Dé�nition. Soient f ∈ FE et g ∈ GF . On appelle composée de f et g l'application de E dans G
notée g ◦ f dé�nie par

g ◦ f : E → H, x 7→ g(f(x))

Proposition. Soient f ∈ FE, g ∈ GF et h ∈ HG. On a (h ◦ g) ◦ f = h ◦ (g ◦ f) .
On dit que la composition est associative et l'on note h ◦ g ◦ f.

Proposition. (*) La composée de deux injections est une injection.

Proposition. (*) Si g ◦ f est une injection, alors f est une injection.

Proposition. (*) La composée de deux surjections est une surjection.

Proposition. (*) Si g ◦ f est une surjection, alors g est une surjection.

Proposition. La composée de deux bijections est une bijection.

Proposition. Soit f ∈ FE, on a f ◦ IdE = f et IdF ◦ f = f

Dé�nition. Soit f ∈ EE.

On dit que f est une involution si f ◦ f = Id. On dit que f est idempotente si f ◦ f = f.

Dé�nition. Soit f ∈ FE. On dit que f est inversible s'il existe une application g ∈ EF , appelée

inverse de f qui véri�e

g ◦ f = IdE et f ◦ g = IdF

Proposition. Soit f ∈ FE inversible. Alors l'inverse de f est unique. On le note f−1.

Proposition. (*) Une application f ∈ FE est bijective si et seulement si elle est inversible.

Dans ce cas, l'inverse f−1 associe à tout élément de F son unique antécédent par f .

Corollaire. Soit f ∈ FE bijective, alors f−1 est bijective et (f−1)
−1

= f .

Remarque. L'application Bij(E,E) → Bij(E,E), f 7→ f−1 est donc une involution.

Proposition. Soient f ∈ FE et g ∈ GF . Si f et g sont bijectives, alors g ◦f aussi et (g ◦f)−1 =
f−1 ◦ g−1.

3. Restrictions, prolongements et fonctions indicatrices

Dé�nition. Soit A une partie de E. On appelle fonction indicatrice de l'ensemble A, notée 1A

allant de l'ensemble E dans l'ensemble {0, 1} et telle que

∀x ∈ E, 1A(x) =

{
1 si x ∈ A
0 si x ̸∈ A

On remarque que l'on dé�nit bien là une application car tout élément de E appartient soit à A,

soit à son complémentaire et jamais aux deux à la fois.

Proposition. Soient A et B deux parties de E alors :

1Ā = 1− 1A

1A∩B = 1A1B

1A∪B = max(1A,1B) = 1A + 1B − 1A1B

1A = 1B ⇔ A = B
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Dé�nition. Soit A une partie de E et f une application de E dans F .

On appelle restriction de F à A et on note f|A, l'application de A dans F dé�nie par

∀x ∈ A, f|A(x) = f(x)

Dé�nition. Soient f ∈ FE et g ∈ F ′E′
avec E ⊂ E′.

On dit que l'application g est un prolongement de f à E′ si f = g|E.

Dé�nition. Soient f ∈ EE et A une partie de E. On dit que la partie A est stable par f si

l'image de tout élément de A reste dans A. Dans ce cas, l'application g dé�nie par

g : A → A, x 7→ f(x)

est appelée application induite par f sur A.

Attention, l'application induite n'est pas qu'une restriction. L'ensemble d'arrivée change aussi.

C'est pourquoi on ne parle d'application induite que sur une partie stable alors que l'on peut

restreindre une application à n'importe quelle partie de l'ensemble de départ.

4. Image directe et réciproque d'une partie par une application

Dé�nition. Soit f ∈ FE et A une partie de E. On appelle image directe de A par f et on note

f(A) la partie de F dé�nie par

f(A) = {f(x), x ∈ A}

On peut ainsi parler de f(x) (image d'un élément de E par l'application f) qui est un élément

de F , mais aussi de f(A) (image d'une partie de E), qui est une partie de F . On a alors

f({x}) = {f(x)}.
Si f ∈ EE et A ⊂ E, alors A est stable par f si, et seulement si, f(A) ⊂ A.

Proposition. (*) Soient A et B, deux parties de E et f ∈ FE. On a alors

f(A) = ∅ ⇔ A = ∅
A ⊂ B ⇒ f(A) ⊂ f(B)

f(A ∪B) = f(A) ∪ f(B)

f(A ∩B) ⊂ f(A) ∩ f(B)

f(E)\f(A) ⊂ f(A)

Remarque. L'inclusion f(A ∩B) ⊂ f(A) ∩ f(B) peut être stricte.

Il su�t de prendre f : R → R, x 7→ x2, A = R+ et B = R−

Si f est injective, c'est une égalité.

Remarque. L'inclusion f(E)\f(A) ⊂ f(A) peut être stricte.

Il su�t de prendre f : R → R, x 7→ x2, A = R+ et B = R−.

Si f est injective, c'est une égalité.

Exercice. (*) Soit f ∈ FE une application. Montrer que f est injective si et seulement si

∀(A,B) ∈ P(E)2, f(A ∩B) = f(A) ∩ f(B)

Dé�nition. Soit f ∈ FE et B une partie de F . On appelle image réciproque de B par f et on

note f−1(B) la partie de E dé�nie par

f−1(B) = {x ∈ E : f(x) ∈ B}
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Remarque. Par conséquent,

∀x ∈ E, x ∈ f−1(B) ⇔ f(x) ∈ B

On peut donc parler de l'image réciproque de n'importe quelle partie de F , sans supposer que f
est inversible.

Remarque. Si f ∈ FE est bijective alors

∀B ∈ P(F ), f−1(B) = (f−1)(B)

car, pour tout x ∈ E, x ∈ (f−1)(B) ⇔ ∃y ∈ B : x = f−1(y) ⇔ f(x) ∈ B
La dernière équivalence étant due au fait que x n'a qu'un antécédent par f−1 : f(x).

Remarque. Si B est le singleton {y}, l'image réciproque de B par f est l'ensemble des antécé-

dents de B. Elle peut être vide si y n'a pas d'antécédent par f , ou bien contenir un ou plusieurs

éléments.

Proposition. (*) Soient A et B, deux parties de F et f ∈ FE. On a alors

A ⊂ B ⇒ f−1(A) ⊂ f−1(B)

f−1(A ∪B) = f−1(A) ∪ f−1(B)

f−1(A ∩B) = f−1(A) ∩ f−1(B)

f−1(A) = f−1(A)

Remarque. L'implication A ⊂ B ⇒ f−1(A) ⊂ f−1(B) peut ne pas être une équivalence.

Il su�t de prendre f : R → R, x 7→ x2, A = R−∗ et B = {1}
Proposition. (*) Soit f ∈ FE et A ∈ P(E). On a A ⊂ f−1 (f (A)).

Exercice. (*) Soit f ∈ FE. Montrer que f est injective si et seulement si

∀A ∈ P(E), f−1 (f (A)) = A

Proposition. (*) Soit f ∈ FE et A ∈ P(F ). On a f
(
f−1 (A)

)
⊂ A.

Plus précisément, f
(
f−1 (A)

)
= f(E) ∩A.

Exercice. (*) Soit f ∈ FE. Montrer que f est surjective si et seulement si

∀A ∈ P(F ), f
(
f−1 (A)

)
= A

III. Relations dans un ensemble

1. Dé�nition et premiers exemples

Dé�nition. Soit E un ensemble. Une relation R sur E est une partie de E × E. On dit que

deux éléments x et y de E sont en relation et on note xRy si (x, y) ∈ R.

Exemple. ≤ dé�nit une relation sur R. La divisibilité dé�nit une relation sur N et l'inclusion

dé�nit une relation sur P(E).

Dé�nition. Soit E un ensemble muni d'une relation R sur E.

On dit que R est ré�exive si : ∀x ∈ E : xRx
On dit que R est symétrique si : ∀(x, y) ∈ E2 : xRy ⇔ yRx
On dit que R est antisymétrique si : ∀(x, y) ∈ E2 : xRy ∧ yRx ⇒ x = y.
On dit que R est transitive si : ∀(x, y, z) ∈ E3 : xRy ∧ yRz ⇒ xRz

Exemple. Si on considère l'ensemble des droites du plan. On dé�nit une relation R par D1RD2

si les droites D1 et D2 sont orthogonales. La relation R n'est ni ré�exive, ni transitive, ni

antisymétrique, mais elle est symétrique. La relation ≤ sur R est ré�exive, transitive et anti-

symétrique, mais pas symétrique. Il en est de même de l'inclusion dans P(E). La relation sur

N dé�nie par nRm si n et m ont la même parité est ré�exive, symétrique et transitive, mais pas

antisymétrique.
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2. Relations d'ordre

Dé�nition. Soit E un ensemble muni d'une relation R sur E. On dit que R est une relation

d'ordre si elle est ré�exive, antisymétrique et transitive. On dit que l'ensemble E est ordonné

lorsqu'il est muni d'une relation d'ordre.

Exemple. La relation ≤ est une relation d'ordre sur R.

Dé�nition. Soit E un ensemble muni d'une relation d'ordre notée ≤. On dit que l'ordre est

total (ou que E est totalement ordonnée) si

∀(x, y) ∈ E2 : (x ≤ y) ∨ (y ≤ x)

Dans le cas contraire, on parle d'ordre partiel et deux éléments x et y qui véri�e la proposition

ci-dessus sont dits comparables.

Exemple. L'ordre ≤ est total sur R. La divisibilité muni N d'un ordre partiel pour lequel 2 et 4
sont comparables, mais pas 2 et 3.

3. Relations d'équivalence

Dé�nition. Soit E un ensemble muni d'une relation R sur E. On dit que R est une relation

d'équivalence si elle est ré�exive, symétrique et transitive.

Exemple. La congruence modulo n dé�nie sur l'ensemble Z par xRy si n|(x−y) est une relation

d'équivalence.

Dé�nition. Soit E un ensemble muni d'une relation d'équivalence R. On dé�nit la classe d'un

élément x ∈ E et on note Cl(x) ou x̄ l'ensemble des éléments de E en relation avec x.
On appelle classe d'équivalence tout ensemble de la forme Cl(x) avec x ∈ E.

On dit d'un élément d'une classe d'équivalence qu'il est un représentant de cette classe.

Proposition. (*) Soit A une classe d'équivalence, alors

∀x ∈ A, A = Cl(x)

Proposition. (*) Soit E un ensemble muni d'une relation d'équivalence R. On a alors

∀x ∈ E, x ∈ Cl(x)

∀(x, y) ∈ E2 : Cl(x) ∩ Cl(y) ̸= ∅ ⇒ Cl(x) = Cl(y)

Les classes d'équivalence forment donc une partition de E.

Exercice. (*) Soit f une application de E dans F .

Montrer que la relation sur E dé�nie par

xRy si f(x) = f(y)

est une relation d'équivalence.

Prouver que la classe d'un élément x ∈ E est f−1({f(x)}).
En déduire que les classes d'équivalences sont les ensembles f−1({y}) pour y ∈ f(E).


