
Fonctions usuelles

I. Généralités sur les fonctions

1. Domaine de dé�nition et graphe

Une fonction f d'une variable réelle à valeurs réelles permet, à tout élément x d'une partie de R,
d'associer un unique nombre réel alors noté f(x).

Dé�nition. L'ensemble des réels x pour lesquels f(x) est dé�ni s'appelle le domaine de dé�nition

de f . Si on le note Df , alors on écrit

f : Df → R, x 7→ f(x).

Remarque. Si l'on doit prouver que la fonction f : D → R, x 7→ f(x) est bien dé�nie, alors

il faut véri�er que pour tout x ∈ D, le réel f(x) est bien dé�ni, c'est-à-dire que D ⊂ Df .

Remarque. Si le couple (x, y) véri�e y = f(x) on dit alors que y est l'image de x par f et que

x est un antécédent de y par f .

Dé�nition. Soit f : D → R, x 7→ f(x).
On appelle graphe de f le sous-ensemble de R2, Γf = {

(
x, f(x)

)
, x ∈ D}

On dit encore que Γf est la courbe d'équation y = f(x).

Exercice. (*) Soit f : D → R. Déterminer l'ensemble de dé�nition et les graphes des fonctions

suivantes en fonctions de ceux de f .

� x 7→ f(−x)
� x 7→ −f(x)

� x 7→ f(x) + a
� x 7→ f(x+ a)

� x 7→ a− f(x)
� x 7→ f(a− x)

� x 7→ f(2x)
� x 7→ 2f(x)

Remarque. (*)

� Pour montrer que Γf est symétrique par rapport à la droite d'équation x = a, on doit

prouver que ∀x ∈ Df , 2a− x ∈ Df et f(2a− x) = f(x).
� Pour montrer que Γf est symétrique par rapport au point de coordonnées (a, b), on doit

prouver que ∀x ∈ Df , 2a− x ∈ Df et f(2a− x) = 2b− f(x).

Dé�nition. Soit f : D −→ R où D est symétrique par rapport à O.

� f est paire si ∀ ∈ D, f(x) = f(−x).
Son graphe est alors symétrique par rapport à l'axe (O, ȷ⃗).

� f est impaire si ∀ ∈ D, f(x) = −f(−x).
Son graphe est alors symétrique par rapport à l'origine O du repère.

Dé�nition. Soit f : D −→ R.
� Le réel T est une période de f (ou encore f est T -périodique) si :

� d'une part ∀x ∈ D, x+ T ∈ D et x− T ∈ D,

� d'autre part ∀x ∈ D, f(x+ T ) = f(x).
� f est périodique s'il existe un réel T non nul qui soit une période de f .
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Remarque. Si f est T -périodique, alors f est −T -périodique.
Si f est T -périodique et T ′-périodique, alors f est T + T ′-périodique.
Ainsi, Si f est T -périodique, alors f est kT -périodique pour tout k ∈ Z.

Proposition. Soit f : D −→ R une fonction T -périodique avec T ∈ R∗
+.

� Γf est invariant par toute translation de vecteur k T ı⃗ avec k ∈ Z.
� Si a ∈ R est un réel donné, le graphe de f est la réunion des images de Γf|D∩[a,a+T [

par

toutes les translations de vecteur k T ı⃗ avec k ∈ Z.

2. Opérations sur les fonctions

On dé�nit la somme, le produit et la composée.

Dé�nition. Soit f : D → R. On dé�nit :

f+ : D → R, x 7→

{
f(x) si f(x) ≥ 0

0 sinon
, et f− : D → R, x 7→

{
0 si f(x) ≥ 0

− f(x) sinon
.

Proposition. Soit f : D → R. On a f = f+−f−, |f | = f++f−, f+ =
|f |+ f

2
et f− =

|f | − f

2
·

3. Propriétés des fonctions

Dé�nition. Soit f : D → R.
La fonction f est dite croissante si ∀(x, x′) ∈ D2, x ≤ x′ ⇒ f(x) ≤ f(x′).
La fonction f est dite décroissante si ∀(x, x′) ∈ D2, x ≤ x′ ⇒ f(x) ≥ f(x′).

Remarque. Soit f : D → R.
La fonction f est croissante si, et seulement si, −f est décroissante.

La fonction f est croissante si, et seulement si, ∀(x, x′) ∈ D2, x < x′ ⇒ f(x) ≤ f(x′)
Si f : D → R est croissante, elle ne véri�e pas forcément ∀(x, x′) ∈ D2, x ≤ x′ ⇔ f(x) ≤ f(x′)

Dé�nition. Soit f : D → R.
La fonction f est dite strictement croissante si ∀(x, x′) ∈ D2, x < x′ ⇒ f(x) < f(x′).
La fonction f est dite strictement décroissante si ∀(x, x′) ∈ D2, x < x′ ⇒ f(x) > f(x′).

Remarque. Soit f : D → R.
La fonction f est strictement croissante si, et seulement si, −f est strictement décroissante.

La fonction f est strictement croissante si, et seulement si, ∀(x, x′) ∈ D2, x < x′ ⇔ f(x) < f(x′)

Exercice. Que dire de la multiplication d'une fonction croissante par un scalaire ?

Que dire de l'inverse d'une fonction croissante ?

Que dire de la somme, du produit, de la composée de deux fonctions croissantes ?

Dé�nition. Soit f : D → R.
On dit que f est majorée si ∃M ∈ R, ∀x ∈ D, f(x) ≤ M .

On dit que f est minorée si ∃m ∈ R, ∀x ∈ D, m ≤ f(x).
On dit que f est bornée si elle est majorée et minorée

Remarque. Soit f : D → R.
La fonction f est majorée si, et seulement si, −f est minorée.

La fonction f est majorée si ∃M ∈ R, ∀x ∈ D, f(x) < M .

Proposition. Une fonction f est bornée si, et seulement si, la fonction |f | est majorée.

Exercice. Que dire de la multiplication d'une fonction majorée par un scalaire ?

Que dire de l'inverse d'une fonction majorée ?

Que dire de la somme, du produit, de la composée de deux fonctions majorées ?
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II. Rappels et compléments sur la continuité et la dérivation

Tous les résultats de cette partie sont admis mais à connaître

On considère une fonction f : D → R.

1. Dé�nitions

Les dé�nitions qui suivent sont connues mais seront reprises ultérieurement lorsque la notion de
limite aura été dé�nie proprement.

Dé�nition. La fonction f est continue en a ∈ D si limx→a f(x) = f(a).

Remarque. Le caractère continue d'une fonction en a est une propriété locale : si f et g sont

deux fonctions qui coïncident au voisinage de a, alors f est continue en a si et seulement si g
l'est.

Dé�nition. On dit que f est continue sur D si f est continue en tout point de D.

L'ensemble des fonctions continues sur D est noté C(D,R).

Dé�nition. La fonction f est dérivable en a ∈ D si son taux d'accroissement en a :

τa : D \ {a} → R, x 7→ f(x)− f(a)

x− a

possède une limite �nie en a. Cette limite s'appelle alors nombre dérivé de f en a et se note f ′(a).

Remarque. Graphiquement, le taux d'accroissement τa(x) est égal à la pente de la droite qui

joint les points de coordonnées (x, f(x)) et (a, f(a)). Si f est dérivable en a, alors la courbe

représentative de f admet en a une tangente d'équation

y = f(a) + f ′(a)(x− a)

Proposition. Si f est dérivable en a, alors elle est continue en a.

Remarque. Le caractère dérivable d'une fonction en a est une propriété locale : si f et g sont

deux fonctions qui coïncident au voisinage de a, alors f est dérivable en a si et seulement si g
l'est.

Dé�nition. On dit que f est dérivable sur D si f est dérivable en tout point de I. Dans ce cas,

l'application

I → R, x 7→ f ′(x)

est appelée fonction dérivée de f sur I et notée f ′.

L'ensemble des fonctions dérivables sur I est noté D(I,R).

2. Propriétés

Proposition. Si f et g sont continues en a, alors la fonction f + g est continue en a

Si f et g sont dérivables en a, alors la fonction f+g est dérivable en a et (f+g)′(a) = f ′(a)+g′(a).

Proposition. Si f est continue en a, alors pour tout réel a, λf est continue en a.

Si f est dérivable en a, alors pour tout réel a, λf est dérivable en a et (λf)′(a) = λf ′(a).

Proposition. Si f et g sont continues en a, alors la fonction fg est continue en a

Si f et g sont dérivables en a, alors la fonction fg est dérivable en a et

(fg)′(a) = f ′(a)g(a) + f(a)g′(a)



4

Proposition. Si f est continue en a et si f(a) ̸= 0, alors la fonction 1/f est continue en a.
Si f est dérivable en aet si f(a) ̸= 0, alors la fonction 1/f est dérivable en a et(

1

f

)′
(a) = − f ′(a)

f(a)2

Corollaire. Si f et g sont continues en a et si g(a) ̸= 0, alors la fonction f/g est continue en

a.
Si f et g sont dérivables en a et si g(a) ̸= 0, alors la fonction f/g est dérivable en a et(

f

g

)′
(a) =

f ′(a)g(a)− g′(a)f(a)

g(a)2

Proposition. Soient f une fonction dé�nie sur D et g une fonction dé�nie sur un D tel que

f(D) ⊂ D′.
Si f est continue en a et si g est continue en f(a), alors g ◦ f est continue en a.
Si f est dérivable en a et si g est dérivable en f(a), alors g ◦ f est dérivable en a et

(g ◦ f)′(a) = f ′(a) (g′ ◦ f)(a)

3. Variations

Dé�nition. On appelle intervalle de R toute partie de R de la forme

� [a, b] = {x ∈ R : a ≤ x ≤ b},
� [a, b[= {x ∈ R : a ≤ x < b},
� ]a, b] = {x ∈ R : a < x ≤ b},
� ]a, b[= {x ∈ R : a < x < b},

� [a,+∞[= {x ∈ R : a ≤ x},
� ]a,+∞[= {x ∈ R : a < x},
� ]−∞, b] = {x ∈ R : x ≤ b},
� ]−∞, b[= {x ∈ R : x < b}

où a et b sont deux réels véri�ant a ≤ b.

Théorème. Si f est une fonction dérivable sur un intervalle I et si f ′ est positive sur I, alors
f est croissante sur I.

Théorème. Si f est une fonction dérivable sur un intervalle I et si f ′ est positive sur I et ne

s'annule qu'en un nombre �ni d points, alors la fonction f est strictement croissante.

Proposition.

� Si f est dérivable sur un intervalle I de dérivée nulle sur I, alors f est constante sur I.
� Si f est dérivable sur un intervalle I de dérivée négative sur I, alors f est décroissante

sur I.
� Si f est dérivable sur un intervalle I de dérivée strictement négative sur I, alors f est

strictement décroissante sur I.

Remarque. Il est nécessaire que I soit un intervalle comme le montre l'exemple de la fonction

x 7→ 1/x qui est strictement décroissante sur R+∗, strictement décroissante sur R−∗ mais pas

strictement décroissante sur R∗

De même, une fonction de dérivée nulle sur R⋆ n'est pas nécessairement constante. En revanche,

elle est constante sur R+⋆ et constante sur R−⋆.

4. Résultat sur les réciproques

Proposition. (*)

� Si f est strictement monotone sur D, alors elle est injective sur D.

� Si f est une injection de D dans R, alors elle réalise une bijection de D dans f(D).
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� Si f est injective et monotone sur D, alors elle est strictement monotone sur D.

� Si f est croissante sur D et réalise une bijection de D dans f(D), alors f−1 est strictement

croissante sur f(D).
� Si f est impaire sur D et réalise une bijection de D dans f(D), alors f−1 est impaire.

� Si f est réalise une bijection de D dans f(D), alors les graphes de f et f−1 sont symé-

triques par rapport à la première bissectrice.

Théorème. Soit I un intervalle et f : I → R continue et strictement croissante, alors f(I) est
un intervalle et f réalise une bijection de I dans f(I).
Sa réciproque

f−1 : f(I) → I, y 7→ l'unique x ∈ I tel que y = f(x)

est continue et strictement croissante.

Remarque.

� C'est l'hypothèse de continuité de f qui assure que l'image de l'intervalle I par f soit un

intervalle.

� Si I = [a, b], alors J = [f(a), f(b)] ; si I = [a, b[, alors J = [f(a), limx→b− f(x)[ ; si

I =]−∞, b], alors J = [limx→−∞ f(x), f(b)],...

Remarque. On peut remplacer f par une application strictement décroissante et obtenir le même

résultat. La réciproque est alors continue et strictement décroissante.

Théorème. Soit f dérivable sur un intervalle I et établissant une bijection de I dans f(I).
La fonction réciproque f−1 est dérivable en a ∈ f(I) si, et seulement si, f ′ (f−1(a)

)
̸= 0.

Dans ce cas, (
f−1

)′
(a) =

1

f ′ (f−1(a))
·

5. Plan d'étude d'une fonction

� Domaine de dé�nition
� Étude des propriétés permettant la réduction du domaine d'étude : parité, imparité, pé-

riodicité
� Tableau de variations.
� asymptotes :

Si f a une limite �nie en ±∞, alors la droite d'équation y = b est appelée asymptote
horizontale à la courbe.
Si f a une limite in�nie en un point a, alors la droite d'équation x = a est appelée
asymptote verticale à la courbe.

� Tracé

III. Fonctions usuelles

1. Fonctions circulaires réciproques

Dé�nition. La fonction cosinus réalise une bijection strictement décroissante de [0, π] dans [−1, 1].
On dé�nit alors la fonction arccosinus comme sa bijection réciproque. Elle est donc strictement

décroissante.

Proposition. (*) On a cos (arccosx) = x pour tout x ∈ [−1, 1], mais on a arccos (cosx) = x si

et seulement si x ∈ [0, π] et pas pour tout x ∈ R.

Exercice. (*) Calculer arccos (cos(2π)), arccos (cos(−π/3)).
Tracer le graphe de la fonction x 7→ arccos (cosx)
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Proposition. (*)La fonction arccos est continue sur [−1, 1], dérivable sur ]− 1, 1[ et

∀x ∈]− 1, 1[, (arccos)′(x) = − 1√
1− x2

·

Dé�nition. La fonction sinus réalise une bijection strictement croissante de [−π/2, π/2] dans [−1, 1].
On dé�nit alors la fonction arcsinus comme sa bijection réciproque. Elle est donc strictement

croissante et impaire.

Proposition. (*) On a sin (arcsinx) = x pour tout x ∈ [−1, 1], mais on a arcsin (sinx) = x si

et seulement si x ∈ [−π/2, π/2] et pas pour tout x ∈ R.

Exercice. (*) Calculer arcsin (sin(π)), arcsin (sin(−3π/4)).

Tracer le graphe de la fonction x 7→ arcsin (sinx)

Proposition. (*) La fonction arcsin est continue sur [−1, 1], dérivable sur ]− 1, 1[ et

∀x ∈]− 1, 1[, (arcsin)′(x) =
1√

1− x2
·

Proposition. (*) On a : ∀x ∈ [−1, 1], arcsinx+ arccosx =
π

2
·

Dé�nition. La fonction tangente réalise une bijection strictement croissante de [−π/2, π/2]
dans R. On dé�nit alors la fonction arctangente comme sa bijection réciproque. Elle est donc

strictement croissante et impaire.

Proposition. On a tan arctanx = x pour tout x ∈ R, mais on a arctan tanx = x si et seulement

si x ∈]− π/2, π/2[ et pas pour tout x ∈ Dtan.

Exercice. (*) Calculer arctan tan(π), arctan tan(−3π/4).

Tracer le graphe de la fonction x 7→ arctan tanx

Proposition. La fonction arctan est dérivable sur R et

∀x ∈ R, (arctan)′(x) =
1

1 + x2

Exercice. (*) Calculer arctan tan(π), arctan tan(−3π/4).

Tracer le graphe de la fonction x 7→ arctan tanx

Exercice. (*) Tracer le graphe de la fonction x 7→ arctanx+ arctan(1/x)

2. Fonction logarithme

Pour dé�nir la fonction logarithme on admet la proposition suivante.

Dé�nition. Soit f une fonction dé�nie sur D. On dit que F est une primitive de f sur D si F
est dérivable sur D et si ∀x ∈ D, F ′(x) = f(x).

Théorème. (admis) Soit f une fonction continue sur un intervalle I et a ∈ I. La fonction

F : x 7→
∫ x
a f(t) dt est une primitive de f .

Corollaire. Si f est une fonction continue sur un intervalle I, alors elle admet une primitive

sur I.

Remarque. Dans ce cas, f admet une in�nité de primitives sur I qui di�èrent toutes d'une

constante. En e�et, la di�érence entre deux primitives de f est de dérivée nulle.
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Corollaire. (*) Soit f : I → R une fonction continue et a ∈ I. Il existe une unique primitive

F de f sur I s'annulant en a ; il s'agit de F : I → R, x 7→
∫ x
a f(t) dt

Dé�nition. On dé�nit la fonction logarithme népérien notée ln comme l'unique primitive sur R+⋆

de la fonction x 7→ 1/x qui s'annule en 1. Autrement dit,

∀x ∈ R+⋆, ln(x) =

∫ x

1

dt

t

Proposition. (*) Pour tout couple (x, y) ∈ R+⋆ et n ∈ N, on a

ln(xy) = ln(x) + ln(y)

ln

(
x

y

)
= ln(x)− ln(y)

ln

(
1

x

)
= − ln(x)

ln(xn) = n ln(x)

(1)

Proposition. (*) Pour tout réel x ∈ R+⋆, on a

ln(x) ≤ x− 1

Remarque. Ce résultat est équivalent à ln(1 + t) ≤ t pour tout réel t > 1.

Proposition. On a les limites suivantes :

lim
x→0+

ln(x) = −∞ lim
x→+∞

ln(x) = +∞

Donc la fonction logarithme népérien réalise une bijection de R+⋆ dans R.

Remarque. Pour montrer que lim
x→+∞

ln(x) = +∞, on admet le résultat suivant

Si f : [a,+∞[→ R est une fonction croissante, alors elle admet une limite �nie en +∞ si et

seulement si elle est majorée. Dans le cas contraire, on a

lim
x→+∞

f(x) = +∞

On construit de même une proposition sur les fonctions décroissantes et concernant les limites

en −∞.

3. Fonction exponentielle

Dé�nition. On dé�nit la fonction exponentielle de R dans R+⋆ la fonction réciproque du loga-

rithme népérien. Elle est donc strictement croissante. L'image d'un réel x est noté ex ou exp(x).

Corollaire. On en déduit les limites suivantes :

lim
x→−∞

exp(x) = 0 lim
x→+∞

exp(x) = +∞

Proposition. (*) La fonction exponentielle est dérivable sur R. Sa dérivée est la fonction ex-

ponentielle.

Proposition. (*) Pour tout couple (x, y) ∈ R2, on a

ex+y = exey

ex−y =
ex

ey

e−x =
1

ex

ex ≥ 1 + x

(2)
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4. Fonction puissance

Proposition. Pour tout entier naturel n, la fonction puissance x 7→ xn est dé�nie sur R et de

même parité que n.

Proposition. (*) Pour tout entier naturel n, la fonction puissance x 7→ xn est dérivable sur R
de dérivée x 7→ nxn−1.

Proposition. (*) Si n est un entier impair, alors la fonction puissance x 7→ xn établit une

bijection strictement croissante de R dans R.
On peut donc dé�nir sur R sa réciproque que l'on note x 7→ n

√
x ou x 7→ x1/n. Elle est impaire,

continue sur R et dérivable sur R∗ de dérivée x 7→ x1/n

nx
·

De plus, pour tout x ∈ R, on a :

n
√
x =


exp

(
1

n
ln(x)

)
si x > 0

0 si x = 0

− exp

(
1

n
ln(−x)

)
si x > 0

Proposition. Si n est un entier impair, alors : ∀(x, y) ∈ R2, (xy)1/n = x1/ny1/n.

Proposition. (*) Si n est un entier pair non nul, alors la fonction puissance x 7→ xn établit

une bijection strictement croissante de R+ dans R+.

On peut donc dé�nir sur R+ sa réciproque que l'on note x 7→ n
√
x ou x 7→ x1/n. Elle est continue

sur R et dérivable sur R+∗ de dérivée x 7→ x1/n

nx
·

De plus, pour tout x ∈ R+, on a :

n
√
x =

 exp

(
1

n
ln(x)

)
si x > 0

0 si x = 0

Proposition. Si n est un entier pair non nul, alors : ∀(x, y) ∈ (R+)
2
, (xy)1/n = x1/ny1/n.

Remarque. Si n est un entier impair, on a pour tout x ∈ R,
(
x1/n

)n
= x et (xn)1/n = x.

Si n est un entier pair, alors :

� l'expression
(
x1/n

)n
n'a de sens que si x ∈ R+ et dans ce cas

(
x1/n

)n
= x

� l'expression (xn)1/n a un sens pour tout réel x et (xn)1/n = |x|.

Proposition. Pour tout entier naturel n, la fonction x 7→ 1

xn
= x−n est dé�nie sur R∗ et de

même parité que n. Elle est dérivable sur R∗ de dérivée x 7→ −n

xn+1
= −nx−n−1.

Proposition. (*) Si n est un entier impair, alors la fonction puissance x 7→ x−n établit une

bijection de R∗ dans R∗.

On peut donc dé�nir sur R∗ sa réciproque que l'on note x 7→ x−1/n. Elle est impaire, continue et

dérivable sur R∗ de dérivée x 7→ −x−1/n

nx
·

De plus, pour tout (x, y) ∈ (R∗)2, on a x−1/n =
1

x1/n
et (xy)−1/n = x−1/ny−1/n.
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Proposition. (*) Si n est un entier pair, alors la fonction puissance x 7→ x−n établit une

bijection strictement décroissante de R+∗ dans R+∗. On peut donc dé�nir sur R+∗ sa réciproque

que l'on note x 7→ x−1/n. Elle est continue et dérivable sur R+∗ de dérivée x 7→ −x−1/n

nx
·

De plus, pour tout (x, y) ∈ (R+∗)
2
, on a x−1/n =

1

x1/n
et (xy)−1/n = x−1/ny−1/n.

Remarque. Pour tout entier n ∈ Z et pour tout x ∈ R+∗, on a xn = en ln(x) et x1/n = eln(x)/n.
Cette propriété va nous permettre de généraliser la notion de puissance.

Dé�nition. Soit a un réel. On dé�nit la fonction puissance a sur R+⋆ par fa : x 7→ exp(a ln(x)).
L'image de tout réel strictement positif x est notée xa.

On remarque que si a ∈ Z∗ ou 1/a ∈ Z, alors la fonction puissance fa coïncide sur R+∗ avec la
dé�nition précédente.

Proposition. (*) Pour tout (a, b) ∈ R2 et pour tous réels x et y strictement positifs, on a :

xa+b = xaxb

(xy)a = xaya

(xa)b = xab

x−a =
1

xa

(3)

Proposition. (*) Pour tout réel a, la fonction puissance x 7→ xa est dérivable sur R+⋆. Sa

dérivée est la fonction x 7→ axa−1.

Elle est donc strictement croissante si a > 0 et strictement décroissante si a < 0.

Proposition. (*) On a les limites suivantes :

lim
x→0+

xa = 0 si a > 0

lim
x→0+

xa = +∞ si a < 0

lim
x→+∞

xa = +∞ si a > 0

lim
x→+∞

xa = 0 si a < 0

La fonction puissance réalise une bijection strictement monotone de R+⋆ dans lui-même. Sa

réciproque est la fonction x 7→ x1/a.

Remarque. Soient u et v deux fonctions dérivables sur D telles que v soit à valeurs dans R+∗,
alors la fonction vu : x 7→ v(x)u(x) est dérivable sur D de dérivée

x 7→
(
u′(x) ln(v(x)) + u(x)

v′(x)

v(x)

)
v(x)u(x)

5. Fonctions hyperboliques

Dé�nition. On dé�nit les fonction cosinus hyperbolique et sinus hyperbolique sur R comme les

parties paires et impaires de la fonction exponentielle, i.e. :

ch : x 7→ ex + e−x

2
et sh : x 7→ ex − e−x

2

Proposition. (*) La fonction cosinus hyperbolique est dérivable et a pour dérivée la fonction

sinus hyperbolique. La fonction cosinus hyperbolique est paire, strictement décroissante sur R−

et strictement croissante sur R+. De plus, ∀x ∈ R, chx ≥ 1.
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Proposition. (*) La fonction sinus hyperbolique est dérivable et a pour dérivée la fonction

cosinus hyperbolique. La fonction sinus hyperbolique est impaire et strictement croissante sur R.

Proposition. (*) Soient x et y deux nombres réels, alors on a

ch2x− sh2x = 1

ch(x+ y) = chxchy + shxshy

sh(x+ y) = shxchy + chxshy

(4)

Dé�nition. On dé�nit la fonction tangente hyperbolique sur R par

th : x 7→ shx

chx

Proposition. (*) La fonction tangente hyperbolique est dérivable sur R et

∀x ∈ R, th′(x) = 1− th2x =
1

ch2x

La fonction tangente hyperbolique est impaire et strictement croissante.

Proposition. Les fonctions cosinus et sinus hyperboliques admettent les limites suivantes :

lim
x→+∞

chx = +∞ lim
x→−∞

chx = +∞

lim
x→+∞

shx = +∞ lim
x→−∞

shx = −∞

lim
x→−∞

thx = −1 lim
x→+∞

thx = 1

6. Croissances comparées

Proposition. (*) On a les limites suivantes :

lim
x→+∞

ln(x)

x
= 0 lim

x→+∞

ex

x
= +∞

lim
x→0+

x ln(x) = 0 lim
x→−∞

xex = 0

Proposition. (*) Soient α et β des réels strictement positifs, alors on a :

lim
x→+∞

(ln(x))α

xβ
= 0 lim

x→+∞

eαx

xβ
= +∞

lim
x→0+

xβ | ln(x) |α= 0 lim
x→−∞

|x|βeαx = 0

IV. Brève extension aux fonctions à valeurs complexes

Dé�nition. Une fonction à valeurs complexes est dite dérivable en un point lorsque ses parties

réelles et imaginaires le sont. Dans ce cas, f ′ = (Réf)′ + (Imf)′

Les résultats sur la dérivée d'une combinaison linéaire, d'un produit ou d'un quotient sont conser-
vés.

Proposition. (*) Soit λ ∈ C. La fonction de x 7→ eλx est dérivable de dérivée x 7→ λeλx

Proposition. (*) Soit ϕ une fonction dérivable sur un ensemble D à valeurs dans C.
La fonction de x 7→ eϕ(x) est dérivable sur D de dérivée x 7→ ϕ′(x)eϕ(x)

Proposition. (*) Soit f une fonction dérivable sur un ensemble D à valeurs dans D′ ⊂ R et g
une fonction dérivable sur D′ à valeurs dans C.
La fonction de g ◦ f est dérivable sur D de dérivée x 7→ f ′(x)× g′ ◦ f(x).
Proposition. (*) Soit f une fonction dérivable sur un intervalle I à valeurs dans C.
La fonction f est constante sur I si, et seulement si, sa dérivée est nulle.


