Fonctions usuelles

I. Généralités sur les fonctions

1. Domaine de définition et graphe

Une fonction f d’une variable réelle & valeurs réelles permet, a tout élément x d’une partie de R,
d’associer un unique nombre réel alors noté f(x).

Définition. L’ensemble des réels x pour lesquels f(x) est défini s’appelle le domaine de définition
de f. Si on le note Dy, alors on écrit

[ : Dy =R, z— f(x).

Remarque. Si l'on doit prouver que la fonction f : D — R, x — f(x) est bien définie, alors
il faut vérifier que pour tout x € D, le réel f(x) est bien défini, c’est-a-dire que D C Dy.

Remarque. Sile couple (z,y) vérifie y = f(x) on dit alors que y est l'image de x par f et que
x est un antécédent de y par f.

Définition. Soit f : D = R, z — f(z).
On appelle graphe de [ le sous-ensemble de R*, I'y = {(:L',f(:L')), x € D}
On dit encore que I'y est la courbe d’équation y = f(z).

Exercice. (*) Soit f : D — R. Déterminer [’ensemble de définition et les graphes des fonctions
sutvantes en fonctions de ceux de f.

— z— f(—x) —x— f(x)+a — = a— f(z) — x> f(2z)
— z— —f(x) — oz f(z+a) — x> fla—1x) — x> 2f(x)

Remarque. (*)
— Pour montrer que I'y est symétrique par rapport a la droite d’équation x = a, on doit
prouver que Vo € Dy, 2a —x € Dy et f(2a —z) = f(x).
— Pour montrer que I'y est symétrique par rapport au point de coordonnées (a,b), on doit
prouver que Vo € Dy, 2a —x € Dy et f(2a — ) = 2b— f(x).

Définition. Soit f : D — R o0 D est symétrique par rapport a O.
— f est paire siV € D, f(zx) = f(—x).
Son graphe est alors symétrique par rapport & l'aze (O, 7).
— f est impaire siV € D, f(x) = —f(—x).
Son graphe est alors symétrique par rapport a l'origine O du repére.

Définition. Soit f : D — R.
— Le réel T est une période de f (ou encore [ est T-périodique) si :
— dune partVer € D, x+T €D etx—T € D,
— d’autre partVr € D, f(x +T) = f(x).
— f est périodique s’il existe un réel T non nul qui soit une période de f.
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Remarque. Si f est T-périodique, alors f est —T-périodique.
Si f est T-périodique et T'-périodique, alors f est T + T'-périodique.
Ainsi, Si f est T-périodique, alors f est kT-périodique pour tout k € Z.
Proposition. Soit f : D — R une fonction T-périodique avec T' € RY .
— T’y est invariant par toute translation de vecteur kT'7 avec k € Z.
— Sia € R est un réel donné, le graphe de f est la réunion des images de Ff\Dﬁ[a,a+T[ par
toutes les translations de vecteur kT 7 avec k € 7.

2. Opérations sur les fonctions
On définit la somme, le produit et la composée.

Définition. Soit f : D — R. On définit :

' >0 0 ‘ >0
ff:D=R, o~ /(@) szf(x).i ) t ff:D—->R z~— szf(x)‘i .
0 sinon — f(=x) sinon
Proposition. Soit f : D —=R. Ona f=fT—f",|fl=fT+f", f" = ’f‘;—f et [~ = ’f‘Q—f
3. Propriétés des fonctions
Définition. Soit f : D — R.
La fonction f est dite croissante si ¥(z,2') € D?, x <2’ = f(z) < f(2').
La fonction f est dite décroissante si¥(z,2') € D?, x < 2’ = f(x) > f(2').

Remarque. Soit f : D — R.

La fonction f est croissante si, et seulement si, —f est décroissante.

La fonction f est croissante si, et seulement si, ¥(z,2') € D?, x < o' = f(z) < f(2)

Si f : D — R est croissante, elle ne vérifie pas forcément V(x,2') € D?, z <2’ < f(z) < f(2')

Définition. Soit f : D — R.
La fonction f est dite strictement croissante si V(x,z') € D?, z < 2’ = f(x) < f(2').
La fonction f est dite strictement décroissante si¥(x,2') € D?, x < 2’ = f(z) > f(2').

Remarque. Soit f : D — R.
La fonction f est strictement croissante si, et seulement si, —f est strictement décroissante.
La fonction f est strictement croissante si, et seulement si, V(z,2') € D?, x < 2’ & f(z) < f(2)

Exercice. Que dire de la multiplication d’une fonction croissante par un scalaire ?
Que dire de Uinverse d’une fonction croissante ?
Que dire de la somme, du produit, de la composée de deux fonctions croissantes ?

Définition. Soit f : D — R.

On dit que f est majorée si AM € R, Vx € D, f(x) < M.
On dit que f est minorée st Am € R, Vo € D, m < f(x).
On dit que [ est bornée si elle est majorée et minorée

Remarque. Soit f : D — R.
La fonction f est majorée si, et seulement si, —f est minorée.
La fonction f est magjorée si AM € R,V € D, f(x) < M.

Proposition. Une fonction f est bornée si, et seulement si, la fonction |f| est magjorée.

Exercice. Que dire de la multiplication d’une fonction majorée par un scalaire ?
Que dire de Uinverse d’une fonction majorée ?
Que dire de la somme, du produit, de la composée de deux fonctions majorées ?



II. Rappels et compléments sur la continuité et la dérivation

Tous les résultats de cette partie sont admis mais 4 connaitre
On considére une fonction f : D — R.
1. Définitions

Les définitions qui suivent sont connues mais seront reprises ultérieurement lorsque la notion de
limite aura été définie proprement.

Définition. La fonction f est conlinue en a € D silim,_, f(x) = f(a).

Remarque. Le caractére continue d’une fonction en a est une propriété locale : si f et g sont
deux fonctions qui coincident au voisinage de a, alors f est continue en a si et seulement si g
lest.

Définition. On dit que f est continue sur D si f est continue en tout point de D.
L’ensemble des fonctions continues sur D est noté C(D,R).

Définition. La fonction f est dérivable en a € D si son taux d’accroissement en a :

f(z) — f(a)

Tr—a

7o : D\ {a} =R, z+—

posseéde une limite finie en a. Cette limite s’appelle alors nombre dérivé de f en a et se note f'(a).

Remarque. Graphiquement, le tauzr d’accroissement ,(x) est égal G la pente de la droite qui
joint les points de coordonnées (x, f(x)) et (a, f(a)). Si f est dérivable en a, alors la courbe
représentative de f admet en a une tangente d’équation

y = fla)+ f'(a)(z — a)
Proposition. Si f est dérivable en a, alors elle est continue en a.

Remarque. Le caractére dérivable d’une fonction en a est une propriété locale : si f et g sont
deuz fonctions qui coincident au voisinage de a, alors f est dérivable en a si et seulement si g
lest.

Définition. On dit que f est dérivable sur D si f est dérivable en tout point de I. Dans ce cas,
Uapplication
I—-R, zw f(x)

est appelée fonction dérivée de f sur I et notée f'.
L’ensemble des fonctions dérivables sur I est noté D(I,R).
2. Propriétés

Proposition. Si f et g sont continues en a, alors la fonction f 4 g est continue en a
Si f et g sont dérivables en a, alors la fonction f+g est dérivable en a et (f+g) (a) = f'(a)+4'(a).

Proposition. Si f est continue en a, alors pour tout réel a, Af est continue en a.
Si f est dérivable en a, alors pour tout réel a, \f est dérivable en a et (\f) (a) = Af'(a).

Proposition. Si f et g sont continues en a, alors la fonction fg est continue en a
Si f et g sont dérivables en a, alors la fonction fg est dérivable en a et

(f9)'(a) = f'(a)g(a) + f(a)g'(a)



Proposition. Si f est continue en a et si f(a) # 0, alors la fonction 1/f est continue en a.
Si f est dérivable en aet si f(a) # 0, alors la fonction 1/ f est dérivable en a et

1 (= f@
f - fla)?
Corollaire. Si f et g sont continues en a et si g(a) # 0, alors la fonction f/g est continue en

a.
Si f et g sont dérivables en a et si g(a) # 0, alors la fonction f/g est dérivable en a et

N\ F@gla) - (@) f(a)
(g> (a)= 9(a)?

Proposition. Soient f une fonction définie sur D et g une fonction définie sur un D tel que
f(D)cCD.

Si f est continue en a et si g est continue en f(a), alors go f est continue en a.

Si f est dérivable en a et si g est dérivable en f(a), alors go f est dérivable en a et

(9o f)(a) = f'(a)(g"© f)(a)

3. Variations

Définition. On appelle intervalle de R toute partie de R de la forme

— Ja,b]={z R : a<z<b}, — [a,+o0[={z €R : a <z},
— la,b[={r €R : a <z < b}, — la,+oo[={z €eR : a <z},
— Ja,bj ={z €R : a <z <b}, — | =00, ={z eR : z <b},
— Ja,b[={x €R : a <x < b}, — | —oo,b={zeR : xz<b}

ot a et b sont deux réels vérifiant a < b.

Théoréme. Si f est une fonction dérivable sur un intervalle I et si f' est positive sur I, alors
f est croissante sur I.

Théoréme. Si f est une fonction dérivable sur un intervalle I et si [’ est positive sur I et ne
s’annule qu’en un nombre fini d points, alors la fonction f est strictement croissante.

Proposition.
— Si f est dérivable sur un intervalle I de dérivée nulle sur I, alors f est constante sur I.
— Si f est dérivable sur un intervalle I de dérivée négative sur I, alors f est décroissante
sur I.
— Si f est dérivable sur un intervalle I de dérivée strictement négative sur I, alors [ est
strictement décroissante sur I.

Remarque. Il est nécessaire que I soit un intervalle comme le montre l'ezemple de la fonction
x — 1/x qui est strictement décroissante sur RY* ) strictement décroissante sur R™* mais pas
strictement décroissante sur R*

De méme, une fonction de dérivée nulle sur R* n’est pas nécessairement constante. En revanche,
elle est constante sur RY* et constante sur R™*.

4. Résultat sur les réciproques

Proposition. (*)
— Si f est strictement monotone sur D, alors elle est injective sur D.
— Si f est une injection de D dans R, alors elle réalise une bijection de D dans f(D).



— Si f est injective et monotone sur D, alors elle est strictement monotone sur D.

— Si f est croissante sur D et réalise une bijection de D dans f(D), alors f~1 est strictement
croissante sur f(D).

— Si f est impaire sur D et réalise une bijection de D dans f(D), alors f~1 est impaire.

— Si f est réalise une bijection de D dans f(D), alors les graphes de f et f~! sont symé-
triques par rapport o la premuére bissectrice.

Théoréme. Soit I un intervalle et f : I — R continue et strictement croissante, alors f(I) est
un intervalle et f réalise une bijection de I dans f(I).
Sa réciproque

7t f(I) = I, y — Vunique z € T tel que y = f(x)

est continue et strictement croissante.

Remarque.
— (est hypothése de continuité de f qui assure que l'image de Uintervalle I par f soit un
intervalle.
— Si I = [a,b], alors J = [f(a), f(b)]; si I = [a,b], alors J = [f(a),limy_p— f(x)[; si
I =] —00,b], alors J = [limgy—_oo f(), f(D)],...

Remarque. On peut remplacer f par une application strictement décroissante et obtenir le méme
résultat. La réciproque est alors continue et strictement décroissante.

Théoréme. Soit f dérivable sur un intervalle I et établissant une bijection de I dans f(I).
La fonction réciproque f~' est dérivable en a € f(I) si, et seulement si, f' (ffl(a)) #0.
Dans ce cas,

1

—1\/ A
(f ) ( ) f/ (f—l(a))

5. Plan d’étude d’une fonction

— Domaine de définition

— FEtude des propriétés permettant la réduction du domaine d’étude : parité, imparité, pé-
riodicité

— Tableau de variations.

— asymptotes :
Si f a une limite finie en +oo, alors la droite d’équation y = b est appelée asymptote
horizontale & la courbe.
Si f a une limite infinie en un point a, alors la droite d’équation z = a est appelée
asymptote verticale & la courbe.

— Tracé

ITI. Fonctions usuelles

1. Fonctions circulaires réciproques

Définition. La fonction cosinus réalise une bijection strictement décroissante de [0, 7| dans [—1, 1].
On définit alors la fonction arccosinus comme sa bijection réciproque. Elle est donc strictement
décroissante.

Proposition. (*) On a cos (arccosz) = x pour tout x € [—1, 1], mais on a arccos (cosz) = x si
et seulement si x € [0, 7] et pas pour tout x € R.

Exercice. (*) Calculer arccos (cos(2m)), arccos (cos(—7/3)).
Tracer le graphe de la fonction x — arccos (cos x)



Proposition. (*)La fonction arccos est continue sur [—1,1], dérivable sur | —1,1] et

1
V1— 22

Définition. La fonction sinus réalise une bijection strictement croissante de [—m/2,7/2] dans [—1,1].
On définit alors la fonction arcsinus comme sa bijection réciproque. Elle est donc strictement
croissante et impaire.

Vz €] —1,1], (arccos)'(z) = —

Proposition. (*) On a sin (arcsinz) = x pour tout = € [—1,1], mais on a arcsin (sinz) = z si
et seulement si x € [—m/2,7/2] et pas pour tout x € R.

Exercice. (*) Calculer arcsin (sin(m)), arcsin (sin(—3mn/4)).
Tracer le graphe de la fonction x — arcsin (sin x)

Proposition. (*) La fonction arcsin est continue sur [—1,1], dérivable sur ] —1,1] et

1
Vo €] —1,1], (arcsin)'(z) = ——-
Proposition. (*) On a : Vz € [-1,1], arcsina 4 arccosz = g

Définition. La fonction tangente réalise une bijection strictement croissante de [—m/2,m/2]
dans R. On définit alors la fonction arctangente comme sa bijection réciproque. Elle est donc
strictement croissante et impaire.

Proposition. On a tanarctanx = x pour tout x € R, mais on a arctantanx = x si et seulement
st x €] —7/2,7/2] et pas pour tout x € Dyay.

Exercice. (*) Calculer arctan tan(r), arctan tan(—3m/4).
Tracer le graphe de la fonction x — arctantanx

Proposition. La fonction arctan est dérivable sur R et

1

Vz € R, (arctan)(z) = T 22
x

Exercice. (*) Calculer arctan tan(w), arctan tan(—3m/4).
Tracer le graphe de la fonction x — arctantanx

Exercice. (*) Tracer le graphe de la fonction x — arctanz + arctan(1/x)

2. Fonction logarithme

Pour définir la fonction logarithme on admet la proposition suivante.

Définition. Soit f une fonction définie sur D. On dit que F' est une primitive de f sur D si F
est dérivable sur D et siVax € D, F'(z) = f(x).

Théoréme. (admis) Soit f une fonction continue sur un intervalle I et a € I. La fonction
F:zw fax f(t)dt est une primitive de f.

Corollaire. Si f est une fonction continue sur un intervalle I, alors elle admet une primitive
sur I.

Remarque. Dans ce cas, f admet une infinité de primitives sur I qui différent toutes d’une
constante. En effet, la différence entre deuzx primitives de f est de dérivée nulle.



Corollaire. (*) Soit f : I — R une fonction continue et a € I. Il existe une unique primitive
F de f sur I s’annulant en a; il sagit de ' : I - R, x — ff f(t)dt

Définition. On définit la fonction logarithme népérien notée In comme lunique primitive sur RT™*
de la fonction x — 1/ qui s’annule en 1. Autrement dit,

"t

Vo € R™ In(z) =
1t

Proposition. (*) Pour tout couple (z,y) e R™ etn €N, on a
In(zy) = In(z) + In(y)

( In(y)
(

Proposition. (*) Pour tout réel x € R**, on a

In

SRS
||

\/\/
=

In

In(z) <z -1
Remarque. Ce résultat est équivalent o In(1 +t) <t pour tout réel t > 1.

Proposition. On a les limites suivantes :

lim In(z) = —o0 lim In(z) =400
r—0+ r—r+00

Donc la fonction logarithme népérien réalise une bijection de R™ dans R.

Remarque. Pour montrer que lirf In(z) = +o0, on admet le résultat suivant
T—r+00

Si f : [a,+oo]— R est une fonction croissante, alors elle admet une limite finie en +o0o si et
seulement si elle est majorée. Dans le cas contraire, on a

lim f(z) =400

T—r+00

On construit de méme une proposition sur les fonctions décroissantes et concernant les limites
en —oo.

3. Fonction exponentielle

Définition. On définit la fonction ezponentielle de R dans R la fonction réciproque du loga-
rithme népérien. Elle est donc strictement croissante. L’image d’un réel x est noté e* ou exp(z).

Corollaire. On en déduit les limites suivantes :

lim exp(z) =0 lim exp(z) = 400
T——00

T—-+00

Proposition. (*) La fonction exponentielle est dérivable sur R. Sa dérivée est la fonction ex-
ponentielle.

Proposition. (*) Pour tout couple (z,y) € R?, on a

TV = e%e¥

X
o=

e

: )

.

e T —

eac



4. Fonction puissance

Proposition. Pour tout entier naturel n, la fonction puissance x — z" est définie sur R et de
méme parité que n.

Proposition. (*) Pour tout entier naturel n, la fonction puissance x — x™ est dérivable sur R
de dérivée © — na" L.

Proposition. (*) Si n est un entier impair, alors la fonction puissance x — x™ établit une
bijection strictement croissante de R dans R.

On peut donc définir sur R sa réciproque que l’on note x — /x ou x — /™. Elle est impaire,

1/n
continue sur R et dérivable sur R* de dérivée x — T
nx
De plus, pour tout x € R, on a :
1 )
exp | — In(z) st x>0
n
Yr=<0 st x=20
1
— exp < ln(—x)> si x>0
n

Proposition. Sin est un entier impair, alors : ¥(z,y) € R?, (zy)'/" = zt/myl/m,

Proposition. (*) Si n est un entier pair non nul, alors la fonction puissance x — x™ établit
une bijection strictement croissante de RT dans RT.

On peut donc définir sur Rt sa réciproque que l’on note x — /x ou x /™. Elle est continue
1/n
x

sur R et dérivable sur RT de dérivée x —
ne

De plus, pour tout x € R™, on a :

Proposition. Sin est un entier pair non nul, alors : V(x,y) € (R+)2, (zy)'/™ = zV/myt/m,

Remarque. Sin est un entier impair, on a pour tout r € R, (a:l/”)n =z et (:z:”)l/” =zx.
Si n est un entier pair, alors :
— [expression (ml/”)n n’a de sens que si x € RT et dans ce cas (ml/n)n =z

1/n 1/n

— Uexpression (z™)'" a un sens pour tout réel x et (x™)/" = |x|.

1
Proposition. Pour tout entier naturel n, la fonction x — — = x™" est définie sur R* et de
x

—n

—n—1
xn+1 .

méme parité que n. Flle est dérivable sur R* de dérivée x —

= —nx

Proposition. (*) Si n est un entier impair, alors la fonction puissance x — x=" établit une
bijection de R* dans R*.

On peut donc définir sur R* sa réciproque que Uon note x — x~ /™. Elle est impaire, continue et
—1/n
- PRIy X
dérivable sur R* de dérivée x — — .
nx

1
De plus, pour tout (z,y) € (R*)Q, on az Y = T et (zy)~ V" =g~ 1/ny=1/n,
T



n

Proposition. (*) Si n est un entier pair, alors la fonction puissance x — x~™ établit une

bijection strictement décroissante de R™ dans R™. On peut donc définir sur R™ sa réciproque

—1/n
x
=1/ Elle est continue et dérivable sur R™ de dérivée x — —

que 'on note x — x
nx

1
De plus, pour tout (z,y) € (R+*)2, onazx /"= —im et (xy)~ /" =z Yny=1/n,

Remarque. Pour tout entier n € Z et pour tout x € RY*, on a 2" = ") ¢t zl/n = eln(@)/n,
Cette propriété va nous permettre de généraliser la notion de puissance.

Définition. Soit a un réel. On définit la fonction puissance a sur R™ par f, : x — exp(aln(z)).
L image de tout réel strictement positif © est notée x°.

On remarque que si a € Z* ou 1/a € Z, alors la fonction puissance f, coincide sur R™ avec la
définition précédente.

Proposition. (*) Pour tout (a,b) € R? et pour tous réels x et y strictement positifs, on a :

LD — panb
(ay)” = a"y"
(29)0 = 7 (3)
%= L
e

Proposition. (*) Pour tout réel a, la fonction puissance x — x® est dérivable sur RT™*. Sa
dérivée est la fonction x — az® 1.
Elle est donc strictement croissante si a > 0 et strictement décroissante si a < 0.

Proposition. (*) On a les limites suivantes :

lim+x“20 si a>0
x—0

lim+a:a:+oo s a<0
x—0

lim z% =400 st a>0
T—+00

lim z%=0 si a<0
r——+00

La fonction puissance réalise une bijection strictement monotone de R™ dans lui-méme. Sa
réciproque est la fonction x — zi/e,

Remarque. Soient u et v deux fonctions dérivables sur D telles que v soit a valeurs dans R,
alors la fonction v* : x — v(z)*®) est dérivable sur D de dérivée

= <u’<x) In(v(z)) + u(x)”/(”f)> v(z)u@

v(z)

5. Fonctions hyperboliques

Définition. On définit les fonction cosinus hyperbolique et sinus hyperbolique sur R comme les
parties paires et impaires de la fonction exponentielle, i.e. :
T - T _ ,—Z
Ch:xHi et Sh:xHi
2 2
Proposition. (*) La fonction cosinus hyperbolique est dérivable et a pour dérivée la fonction
sinus hyperbolique. La fonction cosinus hyperbolique est paire, strictement décroissante sur R~
et strictement croissante sur R*. De plus, Vor € R, chax > 1.
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Proposition. (*) La fonction sinus hyperbolique est dérivable et a pour dérivée la fonction
cosinus hyperbolique. La fonction sinus hyperbolique est impaire et strictement croissante sur R.

Proposition. (*) Soient x et y deux nombres réels, alors on a
ch?z —sh?z =1
ch(z + y) = chaxchy + shashy (4)
sh(z + y) = shachy + chashy
Définition. On définit la fonction tangente hyperbolique sur R par

shz
th : z — —
“ chx
Proposition. (*) La fonction tangente hyperbolique est dérivable sur R et
1
Vz € R, th'(z) =1—th’z = —;
ch“x

La fonction tangente hyperbolique est impaire et strictement croissante.
Proposition. Les fonctions cosinus et sinus hyperboliques admettent les limites suivantes :

lim chz = +o0 lim chx = +o0

r——+00 T—r—00
lim shx = 400 lim shzx = —o0
r—+00 T——00
lim thzx = -1 lim thz =1
r—r—00 r—r+00
6. Croissances comparées
Proposition. (*) On a les limites suivantes :
) In(x ) e
lim ():O lim — =400
z—+oco0 I T—+o0o T

lim zln(z) =0 lim ze® =0
z—0t T——00

Proposition. (*) Soient « et 5 des réels strictement positifs, alors on a :

(In(z))*

ar

lim =0 lim — =400
T——+00 B z5+o00 1B
lim 27 | In(z) [*=0 lim |z|%e®® =0
x—0t T—r—00

IV. Bréve extension aux fonctions & valeurs complexes

Définition. Une fonction & valeurs complezes est dite dérivable en un point lorsque ses parties
réelles et imaginaires le sont. Dans ce cas, f' = (Réf) + (Imf)

Les résultats sur la dérivée d’une combinaison linéaire, d’un produit ou d’un quotient sont conser-
vés.
Proposition. (*) Soit A € C. La fonction de x — e’ est dérivable de dérivée x — \eM

Proposition. (*) Soit ¢ une fonction dérivable sur un ensemble D a valeurs dans C.
La fonction de x — e?®) est dérivable sur D de dérivée x — ¢/ (x)e®®)

Proposition. (*) Soit f une fonction dérivable sur un ensemble D & valeurs dans D' C R et g
une fonction dérivable sur D' a valeurs dans C.

La fonction de g o f est dérivable sur D de dérivée x — f'(x) X ¢’ o f(x).

Proposition. (*) Soit f une fonction dérivable sur un intervalle I o valeurs dans C.

La fonction f est constante sur I si, et seulement si, sa dérivée est nulle.



